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Abstract

The field of image synthesis is concerned with generation of novel image content. Image
compositing, the process of combining elements from existing image data into a seamless
whole, is a common approach to image synthesis, employed in application domains such
as visual effects in film, architectural visualisation, or augmented reality.

This thesis combines perceptual modelling with recent advances in machine learning
in order to produce generalisable models of subjective visual realism in the context
of digital image compositing. To achieve this, subjective visual realism in image
composites is first modelled as a function of controllable local image transformations,
applied to introduce composite-like distortions. These models are then validated and
used to produce just-noticeable differences, describing average transformation magnitudes
required for humans to distinguish such processed objects as unrealistic. The resulting
models are then evaluated in the context of visual attention and refined in an image-
wise fashion, before being approximated and generalised using deep learning techniques,
particularly self-supervised transformation equivariant representation learning. The
resulting models are subsequently shown to outperform baselines in an auxiliary task -
image composite harmonisation, indicating that models trained on perceptual data are
capable of generalising to related tasks.
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Chapter 1

Introduction

Digital image compositing combines visual elements from different sources to create
the subjective impression of a single, coherent image (see Figure 1.1 for examples).
Compositing is commonly performed manually, requiring considerable effort, as well as
technical and artistic skill. The final quality, or visual realism, of image composites is
commonly evaluated using subjective approaches, which are time-consuming to perform
and impractical in the context of practical applications, such as film and visual effects,
or mixed reality. Automation of both the assessment and improvement of the quality of
image composites would allow for considerable improvements in terms of the cost and time
efficiency. However, due to the complexity of human perception, modelling such complex
phenomena is a challenging task. This thesis proposes techniques to address some of these
issues, by modelling human perception of realism in the context of image compositing.

1.1 Motivation

1.1.1 The Importance of Visual Information

Digital images have become increasingly present in our lives. Visual information is
paramount to human understanding of their environment and interaction with it, allowing
for compact representation of complex phenomena. The rapid development of image
acquisition and processing technologies, coupled with the proliferation of the Internet,
have created an enormous amount of visual content and made it available worldwide.
Methods of combining, transforming, and otherwise manipulating such images, for both
aesthetic and practical purposes, have been developed and applied in a range of domains,
from visual effects, through digital forensics to medicine. This process has been further
accelerated by recent developments in the fields of machine learning, image understanding
and synthesis, which have allowed for many complex image tasks to be addressed by
learning nonlinear functions from example data, rather than being designed by hand.

Applications of image synthesis are wide-ranging, allowing for functional (Nie et al., 2017)

1



(a) Image by Jörg Prieser from Pixabay

(b) Image by Stefan Keller from Pixabay (c) Image by Josh Hild from Pexels

Figure 1.1: Examples of image composites with varying degrees of realism.
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and aesthetic (Wang et al., 2012) manipulation, domain transfer (Taigman, Polyak and
Wolf, 2016) and generation of new image content (Nguyen et al., 2017). A wide range
of approaches to image synthesis exist, including ground-up synthesis through computer
graphics and rendering (Kajiya, 1986), statistically-based generative methods (Radford,
Metz and Chintala, 2015), or recombination of existing image content, or elements thereof,
into a seamless whole1, known as compositing (Porter and Duff, 1984).

Arguably, image synthesis involves building an understanding of the causal factors
behind visual content, their computational modelling and controlled reproduction or
transformation. This process could involve transforming “geometry and physics into
meaningful images” Glassner (2014), This is not unlike the field of natural language
processing, which aims to accomplish similar goals with language-based content. In both
scenarios, one of the key applications is to replace or aid the expensive human-in-the-loop,
in order to allow automation of various processes, such as generation of new content, or
comprehension and assessment of existing content. In both of these examples, humans
are the ultimate recipients of such generated content, thus when designing such systems is
important to ensure that their outputs align with human expectations. A classical example
of such a subjective evaluation is the Turing Test (Turing, 1950, 2009), which evaluates
how well a machine can emulate (or imitate) a human in a specific task. Turing’s work was
a precursor to the development of machine learning and artificial intelligence in general,
and formalised the philosophical underpinnings of machine intelligence. Many similarities
can be found between the Turing Test and, in the scenario discussed here, subjective
evaluation of the realism of a synthesised image.

1.1.2 The Fundamental Goals of Image Compositing

At a fundamental level, image compositing can be seen as the process of manipulating an
image, or photograph, by inserting element(s) from another image, in such a way as to
create a result which appears realistic and plausible to the average observer (see Figure
1.2 for an example). Most photographs of natural scenes can be seen as perfect image
composites of the objects and scenes featured in them (Xue et al., 2012). Effectively, they
capture the result of a complex rendering function, which considers the interactions of
light and all parts of the scene. However, in the practical compositing scenario, when a
region of an image is inserted into another image, it is very difficult, and often practically
impossible, to access and re-apply the original rendering function to the inserted object.
This results in perceptible differences between the distributions of certain image features,
which can negatively impact subjective realism judgments, particularly if these differences
occur across multiple features.

The set of natural images, such as those including objects and scenes humans encounter
daily, is highly diverse. Variations within this set occur along many dimensions, including

1A seamless whole can be seen as the ultimate goal of compositing, however ’bad composites’ have
become a fine art in recent years, see https://youtu.be/6w6FV8P7HXg?t=41s for example
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(a) Original Composite (b) Harmonised Composite

Figure 1.2: Example of visual difference between an a) unharmonised composite and b) it’s
harmonised version, created by applying local colour correction. Image courtesy of Wright (2013b).

shape, size, illumination, position, colour or orientation, to name just a few. Respectively,
the set of image composites – arbitrary combinations of elements from different source
images – contains even more potential variety. This includes combinations of visual
elements that would be physically impossible in the real world. Coupled with the
complexity of the human visual system, this makes exhaustive modelling of human
perception in this domain a challenging task, as it is infeasible to measure human response
to distortions along all these dimensions of variation.

Interestingly, when a compositing artist performs the task manually, they commonly focus
on adjusting a relatively small set of attributes, with the goal of matching the appearance
of the foreground object to that of the background scene, often achieving perceptually
realistic results (Wright, 2013b). This highlights two key points:

• the key focus of image compositing is minimising appearance-based differences
between the object and scene

• many distortions common to image composites can be both plausibly corrected and
introduced using approximate transformations

The compositing problem can thus be seen as an optimisation procedure based on applying
transformations in order to minimise the perceptual difference between distributions of
relevant features of the object and scene. The fact that composites can be made both
realistic and unrealistic implies the existence of thresholds below which certain image-
based differences are no longer perceptible to human observers. However, because of
the multiple dimensions along which the elements of a composite images may differ,
it is not straightforward to determine the most relevant features to correct, or the
amount of correction required. Consequently, the process of compositing is often referred
to as an art, as no universal solutions exist. Compositing artists commonly rely on
experience and intuition regarding what looks “good enough” and, in some way, implicitly
learn generalised perceptual thresholds of audiences. Understanding and modelling this
process would allow for new methods for automatic assessment and improvement of image
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Figure 1.3: A theoretical idealised compositing pipeline, consisting of an input image, inverse
rendering (decomposition of the photograph into geometry, illumination, material properties and
a camera model), the insertion of a new element into the decomposed scene, followed by a
forward rendering step. The forward rendering step captures an image of the composited scene,
including the newly inserted object, whose appearance is affected by the scene properties (e.g. the
illumination and camera model)

composites, based on human perception.

1.1.3 Perceptual Challenges of Image Compositing

In theory, a perfect image composite can be created through inverse rendering (Marschner
and Greenberg, 1998) – the process of disambiguation and disentanglement of the causal
factors behind a photograph - the scene geometry, illumination, material properties and
camera model (see Figure 1.3 for a conceptual illustration). Once these properties are
disentangled, foreign objects can easily be inserted and affected by the same appearance
model as the original scene at the time of capture. This is followed by conventional forward
rendering, which generates the composited image. In practice, due to the ill-posed nature
of the inverse rendering problem, its results are commonly only approximated, either
heuristically, by compositing artists, or through use of image-statistical approaches.

As such, some key questions, inevitably pondered by compositing artists, are raised when
considering this approximation process, namely:

• Are all appearance-based properties equally important to achieve subjective realism?

• If not, which properties should one focus on to achieve a ‘good enough’ result,
without wasting effort?

• How much do human observers vary in their subjective perceptions of these
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properties?

• Do observers use common visual strategies in assessing the quality, or realism, of
image composites ?

• How does scene content affect these strategies?

The success of both special photographic effects, and visual effects in the film industry
over the last 50 years (Prince, 2010), suggests that many compositing artists have learned
to build intuitive models of audience expectations and visual sensitivity (Prince, 2011).
Accordingly, compositing artists have, at least implicitly, come up with practical answers
for the above questions. At least to the degree that their creations have been considered
plausible, realistic and immersive by audiences. Equally, the expectations of cinema
audiences have grown along with their experience of the medium and content (Kane,
2011). A good example is how special effects in a science fiction films from the 1950s
appear dated, and often comically unrealistic, compared to modern digital visual effects.

1.1.4 Practical Challenges of Image Compositing

Typically, compositing is carried out in a manual or semi-automatic manner, using a
variety of software tools, such as Adobe Photoshop, After Effects or Nuke 3D. The
process involves the use of a variety of image processing operations, which aim to minimise
noticeable differences in certain properties of source images, such as brightness, contrast
or saturation. The type of image processing operations used, and their parameter settings
depend vastly on the source images and the conditions under which they were captured,
or generated. For example, when combining computer graphics with live action content,
it is possible to manipulate additional properties of the rendered computer graphics (CG)
content, such as illumination, texture, albedo and so forth.

The sheer number of possible parameters and a near infinite set of combinations of
image elements makes compositing a complex problem, often solved through painstaking
incremental manual corrections. While automatic compositing methods do exist, for
example in mixed reality headsets, they tend to produce composites of inferior quality,
compared to manually-created ones (Klein and Murray, 2009). The process of quality
evaluation is often performed in a manual, subjective and often informal manner (trial-by-
peers, or a focus group approach), and thus is time-consuming and costly. Additionally,
the manner in which humans perceive inconsistencies in images is nonlinear and difficult to
reconcile with how images are stored in digital systems. This complicates any reasonable
optimisation of compositing efforts guided by minimum audience expectations or any
consistent indication of the aspects of the composites that need urgent improvement. The
above factors make it difficult to successfully automate compositing and its subsequent
quality evaluation. This, in turn, makes the process prohibitively time-consuming and
steepens the learning curve for novice users.
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In order to tackle these issues without sacrificing creative input, automatic prediction of
composite quality should be capable of guiding the artist towards a more realistic final
result, while still allowing for creative freedom. Accordingly, a detailed understanding of
human perception of distortions common in compositing, the contributing parameters and
their mapping to subsequent quality judgements would allow to rank and localise regions
of poor quality. A system able to automatically predict subjective quality ratings could
then also be automated to correct them more efficiently. Aside from iterative assistance
in the creative process, this would allow to significantly speed up a range of quality
control and compositing tasks in general. This would have positive effects for both novice
and professional users, by allowing for more time to focus on the artistic and creative
aspects, while speeding up the coarse matching and achievement of a baseline satisfactory
quality. The work presented in this thesis focuses on developing such perceptually-inspired,
localised composite quality assessment metrics able to inform both automatic and semi-
automatic compositing methodologies.

1.2 Application Domain

The contributions made in this thesis are applicable in a range of domains of image
synthesis and evaluation. The primary application area and chief source of inspiration for
this work is in visual effects and compositing - the synthesis, transformation and generation
of new image and video content by combining natural images with other synthesised or
captured image content. This is because the techniques developed in this thesis attempt
to automate parts of the compositing process in order to aid artists and allow them to
focus on the creative, rather than technical, aspects of their work. Aside from this key
application area, other relevant applications are summarised and discussed below:

1.2.1 Visual Effects

Production of visual effects for film and TV is an expensive process, requiring significant
manual effort (Wright, 2013a). In major motion picture productions, visual effects
production is often allocated a third of the total budget (Curtin and Vanderhoef, 2015).
Automation of various aspects of the compositing pipeline, such as colour correction or
harmonisation, could allow for increased efficiency and reduction in costs, as well as
allowing artists to focus on creative aspects of the process. The models proposed in this
thesis can be incorporated as plugins into such pipelines. Additionally, the framework for
learning to detect and correct perceptually-based image transformations developed in this
thesis can be applied to tasks other than composite harmonisation. Like in other learning-
based scenarios, this can be accomplished through appropriate selection/generation of
training data.
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1.2.2 Subjective & Perceptual Metrics

Digital image data has become extremely commonplace. Many common tasks involving
images rely on various metrics to index, retrieve and filter image data in large databases of
images (Cui, Wen and Tang, 2008). As most image data is ultimately targeted at human
observers, such metrics should correlate with human perception and preferences. For
example, the outputs of many algorithms operating in the image domain, for example
image compression (Patel, Appalaraju and Manmatha, 2019), superresolution (Wang
et al., 2017) or colourisation (Zhang, Isola and Efros, 2016) are often evaluated with respect
to human perception. Accordingly, various perceptual image metrics have found extensive
use in practical applications, for example as objective metrics to minimise in various
optimisation-based tasks (Zhang et al., 2018b). Whether it’s image quality, aesthetics,
realism, saliency or visual similarity, automatic measurement of subjective properties in
image data is significantly improving how increasingly vast datasets of image data are
organised, explored and managed (Gordo et al., 2016).

1.2.3 Image Forensics

While manipulation of images is not novel in and of itself, recent developments in
deep learning-based image synthesis techniques (Goodfellow et al., 2014; Reed et al.,
2016; Zhang et al., 2018a; Wang et al., 2018a; Park et al., 2019) have made image
manipulation techniques much more powerful and accessible to a wider potential audience.
Consequently, there is increased need for tools to detect such manipulation (Ferreira et al.,
2020; Yang et al., 2020). The models proposed in this thesis contribute to this body of
work, as they are designed to detect perceptible image manipulations, or distortions, not
present in natural images. Provided appropriate exemplar data, this methodology could
be extended to detection of other types of image manipulation artefacts, not necessarily
only ones perceptible to humans.

1.2.4 Human Observer Modelling

The techniques developed in this thesis serve as an approach to human observer
modelling (Geisler, 2011). In many complex systems, such as motion picture production,
manufacturing, quality assurance, visual inspection by humans is a common and often
expensive requirement. Predicting human visual performance in such practical scenarios
often allows for significant gains in efficiency (Gai and Curry, 1976). Aside from detailing
the visual strategy observers adopt in the task of composite realism assessment, this
work proposes general-purpose approaches to learning-based approximation of human
performance in particular visual tasks. This is based on a combination of empirical
perceptual modelling and approximation of the resulting perceptual functions using
gradient-based optimisation techniques. This effectively allows for generalisation of an
empirical model to novel image content. As such, complex subjective visual tasks can
be modelled using this approach, allowing to address visual tasks otherwise requiring a
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human in the loop (Cranor, 2008).

1.3 Research Aim

The overall aim of this thesis is to produce perceptually-driven systems to facilitate
computational subjective quality analysis of image composites and guide the subsequent
manual or automated improvement of their quality.

1.4 Research Objectives

The following questions are answered in order to achieve the aim:

1. Define subjective quality and visual realism be in the context of digital image
composites.

2. Measure whether controlled changes in features of image composites predict
subjective quality/realism judgements.

3. Model how changes in different composite image features affect subjective
quality/realism judgements.

4. Assess whether subjective quality judgements are affected by VA and correlated with
spatial image regions.

5. Generalise psychometric models to map localised image features to predictions of
subjective quality judgements.

6. Evaluate if the generalised models provide dependable quality assessment and
improvement on related tasks.

1.5 Methodology

To address the aim, the following methodology is adopted. First, visual realism is defined
in the context of image composites, as a function of perceptible, local, and object-based
image differences. This definition is then evaluated in an empirical study measuring group
JNDs for synthetic composites - images with local image transformations approximating
common distortions found in authentic image composites. This is performed for a large
sample of human observers. Psychometric models are then fit to the empirical data.
Additionally, visual attention allocation and impact of prior knowledge are evaluated in
a separate experiment, in order to assess the impact of scene content on the proposed
psychometric models. In order to generalise these psychometric models to a wider set
of input stimuli, learning-based techniques are adopted to approximate the empirical
functions. This is achieved by self-supervised learning of a TER by learning to predict
local transformation parameters, followed by fine-tuning of this model using the empirical
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psychometric models from earlier experiments. Finally, the trained models are evaluated
in a related downstream task - image harmonisation. This methodology is illustrated in
Figure 1.5.

1.6 Thesis Structure

Chapter 2 presents the background on compositing, the human visual system, approaches
to its modelling and definitions of visual realism, as well as related work in image quality
assessment, visual realism prediction and automatic image compositing and harmonisation

Chapter 3 discusses the background on machine learning, gradient-based optimisation
and deep convolutional neural networks, presenting an overview of key concepts and
applications relevant to the topic of this thesis.

Chapter 4 proposes a methodology for modelling human perception of visual realism as a
function of transformation magnitude, and presents experimental results and psychometric
just-noticeable difference models for several common composite distortions represented as
local image transformations.

Chapter 5 investigates the spatial and temporal allocation of visual attention in
subjective realism assessment, as well as evaluating the impact of prior knowledge and
transformation type on visual attention and subjective realism ratings.

Chapter 6 presents a methodology for generalisation of the proposed empirical just-
noticeable difference/distortion (JND) models using deep convolutional neural networks
and representation learning.

Chapter 7 applies the proposed models to a related task - no reference image composite
harmonisation - and presents an evaluation, comparing the model against baselines.

Chapter 8 summarises and discusses the findings from previous chapters, detailing
broader application scenarios, limitations and directions for future work.

The overall logical structure of this thesis is also illustrated in Figure 1.4

1.7 Contributions

The chief contribution of this thesis is the proposal of an end-to-end methodology for
measurement, modeling and reproduction of human visual sensitivity to common image-
based compositing artefacts. A number of other contributions are made in the process of
achieving this goal, namely:

• A novel method for measuring visual realism as a function of distortion visibility
and a set of resulting JND models (Chapter 4)
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Figure 1.4: Overview of logical structure and relationships between key chapters in thesis. Chapters
1 and 8 excluded for clarity.

Figure 1.5: Overview of the methodology developed in this thesis.
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• A study into how visual attention is deployed during subjective image composite
assessment, illustrating the impact of prior knowledge and distortion type (Chapter
5)

• A methodology for generalisation of JND-based models to unseen images using deep
learning (DL) techniques (Chapter 6)

• An application of generalised JND-based models to an image harmonisation problem
(Chapter 7)

• A state-of-the-art image composite harmonisation model requiring no input masks
(Chapter 7)

The following papers have been published as part of this work:
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2. Dolhasz, A., Frutos-Pascual, M. and Williams, I., 2017. Composite Realism:
Effects of Object Knowledge and Mismatched Feature Type on Observer Gaze and
Subjective Quality. 2017 IEEE International Symposium on Mixed and Augmented
Reality (ISMAR-Adjunct). IEEE, pp.9–14

3. Dolhasz, A., Harvey, C. and Williams, I., 2020. Learning to Observe:
Approximating Human Perceptual Thresholds for Detection of Suprathreshold
Image Transformations. Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. pp.4797–4807

4. Dolhasz., A., Harvey., C. and Williams., I., 2020. Towards unsupervised image
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2. Dolhasz, A., 2017. Towards a more human machine perception of realism in mixed
reality. Whitehead Lecture Series, Goldsmiths University of London

3. Dolhasz, A. 2020. Perceptually-based Detection of Local Exposure Transformations.
Warwick University Visualisation Group (virtual).

12

http://doi.org/10.5220/0009354705740581
http://doi.org/10.5220/0009354705740581


Chapter 2

Understanding Perceptual Image
Quality & Visual Realism

2.1 Introduction

Humans perceive the visual world around them with little conscious effort, able to extract
and process a wide range of complex properties of their environment in a fraction of a
second, relying on limited information. From the two-dimensional array of light intensities
falling on their retinae, they are able to effortlessly infer three-dimensional features of
objects in their environment, such as shape, position, colour or illumination. This allows
them to navigate spaces, interact with objects and perform a wide variety of other tasks
relying on visual information. Despite this, humans are also capable of impressive neglect
of visual information, for example, failing to notice large changes in visual scenes (Simons
and Levin, 1997), or being fooled by visual illusions (Eagleman, 2001). This variability
inherent in the human visual system, further influenced by task, context, attention and
personal experience, while allowing for the visual system to perform under a range of
conditions, makes accurate prediction of subjective perceptual properties a challenging
task.

Computer systems, on the other hand, while capable of storing and transforming image
data perfectly, cannot (yet) intrinsically ‘perceive’ the content of images the same way
humans can.1 With recent advances in artificial intelligence, machine learning and pattern
recognition, particularly deep neural networks (discussed in Chapter 3), combined with
increases in computational power, these operational-level differences between human and
computer perception and related task performance are starting to diminish. For instance,
human performance has already been matched by computers in particular tasks, such as
image recognition, house number classification in street view images, or playing computer
games (Eckersley and Nasser, 2017).

1However, due to the pace of research in this area, the statement above is becoming less accurate by
the day.
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The problem of image quality assessment, and similarly the assessment of many subjective
properties of digital images, combines both problem paradigms illustrated above:

1. understanding of the human visual system and measurement of its performance of
subjective tasks

2. computational modelling of these processes, such that they can be applied to digital
images in practical scenarios.

Humans are known to assess image quality based on properties, or distortions, that
are noticeable to them, rather than objectively quantifiable from the raw image data
(Yang et al., 2005). This is both due to the varying sensitivity of the human visual
system to different types of distortions and patterns, as well as the uneven distribution of
visual attention, often attracted by salient or task-relevant regions. These properties has
been broadly exploited, particularly in the domain of broadcast, where subjective quality
testing has been successfully used to evaluate compression and transmission artifacts,
aiming to minimise the amount of data required to represent a signal, whilst keeping the
subjective quality at an acceptable level for the average audience member (Wang and Li,
2010). Conversely, computer systems are better suited to judging quality by reference,
e.g. comparing a digital image before and after compression and calculating a measure of
pixel-wise differences between the two (Sheikh, Sabir and Bovik, 2006). However, extensive
training by example, or complex computational models of the human visual system are
required in order for a computer system to approximate subjective human judgments,
particularly when no reference image is provided to compare against. Consequently, in
order to address the issue of subjective image quality in the domain of image composites,
it is necessary to first review relevant properties of human visual perception, methods
for measuring subjective responses to visual stimuli and the unique properties of image
composites that set them apart from natural images.

This chapter begins by presenting relevant background on human visual perception
and image quality assessment. This is followed by a literature review of methods for
measurement, modelling and prediction of image quality. Background on digital image
composites and the properties that set them apart from natural images is then presented.
Next, the concept of visual realism is discussed in the context of its definitions in prior
work. Practical relationships to image quality are then developed via a review of relevant
literature. Finally, existing methods for measurement and modelling of visual realism are
reviewed. Building on these ideas, the concept of visual realism is then generalised as a
special case of image quality.

2.1.1 Narrative Structure

This chapter discusses a broad range of topics, crucial to understanding and discussing
the topic of visual realism. This section provides a summary and overview of how the
different topics discussed in this chapter. First, relevant background on human visual
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perception is presented in Section 2.2. This leads to a discussion of modelling of image
properties, such as image quality. The concept of image quality is then introduced in
Section 2.3, and its relationship to visual realism is established in Section 2.4. Once both
concepts are defined and discussed, relevant practical frameworks for measurement and
modelling of subjective quality and realism are reviewed in Section 2.5, including grading
scales, experimental designs, stimulus presentation and observer selection, while Section
2.6 introduces objective approaches to the same problems. Related methods for measuring
and modelling visual realism are discussed in Section 2.7. Finally, Section 2.8 summarises
the information introduced in this chapter.

2.2 Background on Human Visual Perception

Visual perception is the process of acquiring knowledge about environmental
objects and events by extracting information from the light they emit or reflect.

Palmer (1999, p. 5)

Humans are able to reliably recover properties of the three-dimensional world around them
using only a two-dimensional retinal input. Despite the fact that a single 2-D retinal image
can be generated by infinitely many three-dimensional arrangements of objects, humans
are able to accurately and veridically recover many 3-D properties of the world, under
a range of observation conditions. For example, despite the fact that the 2-D retinal
images of objects change shape and size depending on viewing angle and position of the
observer, the properties of the 3-D percept of the object remain consistent. Conversely,
changes in certain properties of a visual stimulus, such as angle of illumination or shadow
direction, can go unnoticed or require significant effort to detect (Ostrovsky, Cavanagh
and Sinha, 2001). This suggests that an understanding of relevant aspects of human
visual perception is critical to modelling assessment of subjective image properties, error
detection and visual evaluation. This section discusses visual perception, the fundamental
characteristics of the human visual system, and the application of this knowledge to the
development of practical models of human perception.

2.2.1 Direct vs Inverse Problems

The human visual system (HVS) and visual perception have attracted a significant amount
of research interest for centuries (Helmholtz, 1856). Throughout this time, two schools
of thought in visual perception have emerged. The key distinction between them is the
representation of the problem of extracting 3-D information from a 2-D image as either a
direct or inverse problem (see Figure 2.1 for an illustration).

Perception as a direct problem

The direct perspective posits that perception is a bottom-up, data-driven process where the
stimulus is transformed into increasingly complex, or high-level, representations between
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(a) Feed-forward / Bottom-up / Direct Model of Human Perception

(b) Feedback / Top-down / Inverse Model of Human Perception

Figure 2.1: Illustration of the conceptual differences between a) feed-forward and b) feed-back
models of human perception. Reproduced from Emberson (2019)

the retina and the visual cortex. This paradigm can be likened to the process of successive
extraction of features from the retinal image. This school of thought builds largely on
the work of Gustav Fechner and his seminal “Elements of Psychophysics” (Fechner, 1966).
Fechner claimed that percepts are results of sensory inputs, and understanding them
requires measuring responses to physical stimuli in a controlled manner. Visual perception
as a direct problem was formally outlined by Gibson (1966) who suggested that no higher
cognitive input was necessary for perception to function. Gibson’s theory relied largely on
observer motion to extract useful information.

Perception as an inverse problem

Visual perception as an inverse problem considers a top-down, hypothesis- or expectation-
driven perspective. The inverse problem paradigm models perceptual processes through
the use of a priori information to constrain the ambiguity introduced by the projection of
visual information from 3-D to 2-D at the interface between the outer world and the visual
system (i.e. the retina). Bayesian methods are often employed in order to achieve this.
This school of thought dates back to the work of Von Helmholtz (1867) who suggested
that visual perceptions are unconscious inferences from sensory input and past knowledge
of the world. His work was extended by Gregory (1970) who described perception as
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a visual hypothesis, giving predictions about unseen properties of objects in the world.
Gestalt studies of perception (Wagemans et al., 2012) also relied on the inverse problem
definition while adopting a more holistic, qualitative approach, compared to Helmholzians.
One of the central principles of gestalt perception was the law of prägnantz (Good Figure,
Law of Simplicity), stating that ambiguous or complex images would be perceived and
interpreted in their simplest form possible. Despite some criticisms, gestalt principles
became the foundation of recent work in computational shape perception, proposed by
Pizlo (2014). In his seminal work, Marr (1982) also emphasised the role of top-down
constraints, suggesting that understanding why certain information processing occurs is
as important as understanding how it occurs.

Perception as predictive processing

To date, both the direct and indirect paradigms have resulted in significant advances in the
understanding of human vision. The current consensus is that both top-down and bottom-
up processing are required to explain processes in vision (Poggio, Torre and Koch, 1987;
Li and Pizlo, 2011). In recent years, the predictive processing framework has been
referenced as a potential route for reconciliation of the two schools of thought and proposed
as a unified theory of cognition (Clark, 2013). The predictive processing framework
proposes that perception and cognition rely on a bidirectional interaction of top-down
predictions and bottom-up sensory signals. Due to the inherent ambiguity of real-world
visual stimuli, the role of top-down predictions is to provide constraints based on learning,
prior knowledge and expectations, which in turn help disambiguate sensory signals. When
the proposed prediction cannot fully explain the stimulus, the residual prediction error is
propagated forward, triggering a learning process that leads to revision of hypotheses
(learning) (Lupyan and Clark, 2015). This “perception as hypothesis testing” school of
thought, has recently been formalised and detailed by Hohwy (2013).

This view of visual perception emphasises the importance of both bottom-up modelling
of the visual stimulus and its features, as well as the top-down aspects of the subjective
viewing experience. This allows for the influence of task, experience, attention and other
subjective traits to be modelled independent of the stimulus. Under this paradigm,
perception can be modelled as a combination of direct measurement and inference
constrained by some ecological, or learning-based priors.

2.2.2 Computational Vision

To date, perhaps the most comprehensive and pragmatic attempt to theorise and model
human visual perception has been proposed by Marr (1982). His discussion of vision
adopted a computational paradigm to describe the HVS as a hierarchical, modular set of
information processing systems. He argued that due to its inherent complexity, in order
to focus on and solve specific problems, such an information processing system should be
analysed at three separate levels of abstraction:
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• computational - understanding what the goal of the input-output computation is,
the reasons for its appropriateness and the logic by which the computation can be
carried out

• algorithmic - recognising how such a computational theory can be implemented,
i.e. how are the inputs and outputs represented and what algorithm is used for the
transformation

• implementational - understanding how the representation and algorithm can be
implemented and realised, both physically and biologically.

These levels of analysis, the emphasis on understanding the goal of computations, as well
as studying their algorithmic implementation, are perhaps Marr’s greatest contributions,
emphasising the importance of both top-down memory and cognitive processes, as
well as bottom-up processing of information and its representations. This approach
to studying visual cognition across multiple-levels of analysis was fundamental to the
development of predictive processing theories (Bubic, Von Cramon and Schubotz, 2010),
early connectionist ideas (Fodor, Pylyshyn et al., 1988; Smolensky, 1988), and Bayesian
approaches (Knill and Richards, 1996) to modelling human perception.

2.2.3 Stages of Visual Processing

Drawing on Marr’s framework, at the computational level of analysis the overall goal of
perception is constructing an internal model of the physical environment within our field of
view in order to be able to efficiently interact with it. This involves a transformation from
a two-dimensional retinal input to an output: a three-dimensional description of the local
environment. Base on this paradigm, the perceptual process can be broken down into 4
stages, according to Palmer (1999) and based on Marr’s analytical framework. Each of the
stages described by Palmer is characterised by distinct input and output representations
and the respective processes required to transform the input into the output representation.

1. The Retinal Image
Visual perception begins with the acquisition of a retinal image (the proximal
stimulus) from a projection of the external environment (the distal stimulus). This
retinal representation is often approximated as a homogeneous 2-D array of receptors
I, each of which occupying a discrete location, represented by its (x, y) coordinates
in retinal image space and sampling the intensity of the light incident on it.

2. The Image-Based Stage
Once the proximal stimulus is sampled at the retina, the first stage of visual
processing derives progressively higher-level representations of the array of image
intensities, such as:

• extraction of primitives such as local edges, lines or corners from the intensity
image,
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Retinal Image
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Figure 2.2: Visual perception represented as four stages of visual processing, from the retinal
image to categorised objects. Note that the arrows indicate both bottom-up and top-down flow of
information. Reproduced from Palmer (1999).

• defining 2-D regions in the image using edge information

• grouping and organisation of primitives into larger structures, based on their
properties,

Marr referred to the results of this image-based stage as the primal sketch.
Specifically, he referred to the result of the initial detection and localisation of these
primitives as the raw primal sketch, and the result of the grouping process as the
full primal sketch. While some disagreement as to the specific processes within this
stage can be found in the literature, the consensus is that the output representation
of this stage is:

• spatially relative to the retinal coordinate system,

• inherently two-dimensional and,

• comprised of image-based primitives, which describe the structure of the
proximal, rather than distal stimulus.

3. The Surface-Based Stage
This stage is concerned with recovering properties of visible surfaces from the image-
based representation. It differs from the former stage in that it represents distal
stimuli in terms of spatial layout of their surfaces in three dimensions, from a viewer-
centred reference frame, rather than focusing on 2-D image features in a retina-
centred reference frame. The surface-based representation consists of a number of
surface primitives – local patches of 2-D surfaces at a particular distance and slant
from the viewer. Initially proposed by Gibson (1950), this stage recognised the role
of depth and surface orientation in recovering 3-D information. Subsequent work
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by Marr (1982) and Barrow and Tenenbaum (1978) confirmed the importance of a
surface-based representation, particularly its encoding of properties of surfaces in
the external world, rather than those of the retinal image. They also suggested
that the process of extracting such surface representations makes use of particular
image-based properties such as texture, shading, motion and stereoscopy. Subsequent
successful application of these processes in the field of computer vision reinforced
the value of a surface-based representation (Longuet-Higgins, Prazdny et al., 1980;
Longuet-Higgins, 1981).

4. The Object-Based Stage
This stage of perception is concerned with integrating the incomplete 2.5-D
information from the surface-based representation into a true 3-D representation,
which includes some unseen, occluded surfaces in addition to those from the previous
stage. Thus, this stage is represented with volumetric primitives within a 3-D space
and an object-based reference frame. This stage of perception clearly illustrates the
importance of top-down assumptions and pre-existing constraints, as the information
presented to the observer is incomplete, yet the representation derived from this
information appears to be veridical. To date, there is no clear consensus regarding
how exactly this representation is arrived at from the surface-based representation.
Perhaps the most fundamental paradigm change has recently been proposed by Pizlo
(2014) who argues the importance, if not superiority, of a priori constraints over
bottom-up visual information in the context of object shape perception, providing
compelling evidence.

Marr’s modular approach to the analysis of vision provides both a computational
framework for the analysis of visual processes, as well as computational models for several
visual processes, such as edge extraction, grouping or structure from motion. Many
modern computer vision techniques also rely on the hierarchical approach to modelling
vision, particularly Convolutional Neural Networks, discussed in Section 3.3.5.

2.2.4 Scene Perception & Organisation

In order to perceive the complex world around us, mere 3-D object perception is not
enough, as these objects are often combined and organised into more complex scenes.
When humans perceive real-world scenes, they are able to internalise much more than
simply a listing of objects present in the scene. In fact, it is well-known that context -
the semantic and spatial relationships between these objects - is crucial to the correct
identification of scenes (Biederman, 1972). Humans are extremely efficient at the task
of scene classification and are able to encode properties such as relative size, positions,
semantic probabilities and interactions between objects in a very short time, as evidenced
by Biederman, Mezzanotte and Rabinowitz (1982). In fact, Potter (1976) noted that
understanding of an average scene requires around 100ms, while a memory representation
requires another 300ms. However, what is captured by the visual system is likely not a
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detailed ‘photographic’ representation, but rather a coarse, abstract one, referred to as the
‘gist’ of a scene (Friedman, 1979; Intraub, 2002). Oliva (2005) claims that global image
features are responsible for this time efficiency, ruling out a full, bottom-up process due
to ecological implausibility and evidence that a single fixation can be enough to correctly
classify a scene (Intraub, 2002).

2.2.5 Colour Vision

Human perception of colour has been theorised on two distinct levels. The trichromatic
theory of colour vision proposed by Thomas Young (Young, 1802) poses colour vision as
a function of three different receptors in the eye, each sensitive to a specific colour. This
theory was extended and formalised by Helmholtz (1856) who identified the receptors as
cones sensitive to different wavelengths of light - long (L), medium (M) and short (S)
- corresponding to primary colours. Conversely, the opponent-process theory of colour
vision, proposed by Ewald Hering (Hurvich and Jameson, 1957), describes colour vision
as a function of the brain and its interpretation of the signals from the eye. It builds
on the Young-Helmholtz theory and describes colour perception as an opponent process,
relying on excitatory and inhibitory combinations of signals from the L, M and S cones.
These combinations form three colour-opponent channels, two chromatic (blue-yellow and
red-green) and one achromatic (white-black).

2.2.6 Contrast Sensitivity

The HVS is less sensitive to absolute changes in stimulus, compared to relative ones.
Consequently, it is the differences in colour and luminance that make it possible for the
HVS to distinguish patterns and objects in the real world. The ability of the HVS to
detect details of a visual scene hinges on both the relative size and contrast of those
details. Campbell and Robson (1968) evidenced this by measuring the human contrast
sensitivity function (CSF), describing the relationship between the spatial frequency of
sinusoidal gratings and their visibility to observers. The CSF is important for quantifying
the performance of the visual system (Van Nes and Bouman, 1967), as it provides a
measure of the frequency response of the HVS. Practically, its employment allows for local
weighting of visual stimuli based on their spatial frequency. Several models of the CSF
have been proposed in the literature (Mannos and Sakrison, 1974; Daly, 1992; Ahumeda,
1996) and underpin many HVS models applied in areas such as error visibility assessment
(Wang et al., 2004), image quality evaluation (Barten, 1999) or saliency (Perazzi et al.,
2012). Mullen (1985) provides an extension of this work into colour vision by measuring
human CSFs for the blue-yellow and red-green chromatic channels. She found that the
absolute sensitivity and spatial resolution of chromatic channels is significantly lower than
that of the achromatic channel. Furthermore, she notes the low-pass characteristic of the
chromatic CSF in contrast to the bandpass shape of the achromatic CSF, which accounts
for the higher absolute sensitivity of the chromatic versus achromatic channels for very
low spatial frequencies. Further evidence by Losada and Mullen (1994) suggest that three
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Figure 2.3: Empirical contrast sensitivity functions for scotopic, mesopic and photopic vision,
measured for sine wave gratings at a single orientation overlaid on top of test stimulus - sine wave
gratings at different spatial frequencies and contrast. Image courtesy of Arregui et al. (2020)

Figure 2.4: Illustration of the effect of decreasing relative contrast between background and target
on the visibility of the target. The intensity of the text is progressively increased to match that of
the background.

separate bandpass mechanisms tuned to different spatial frequencies are responsible for
this. The spatial frequencies at which contrast sensitivity is measured are expressed in
degrees of visual angle, implying that viewing distance has an impact on the visibility of
certain details.

2.2.7 Visual Masking

Visual masking is a phenomenon that occurs when a stimulus, referred to as the target, is
rendered perceptually invisible by the presence of another stimulus - the mask. This effect
is rooted in the HVS’s varying sensitivity to different spatial frequencies and orientations.
Both spatial frequency and contrast have an impact on the degree of masking, e.g. for a
given mask, the contrast at which the target becomes visible is referred to as the visibility
threshold (Walter, Pattanaik and Greenberg, 2002). Legge and Foley (1980) investigated
the impact of contrast and spatial frequency on the visibility threshold of one sinusoidal
grating (the target) in the presence of another (the mask). They found that changes in both
the spatial frequency and contrast of the mask had a non-linear impact on the visibility
of the target. Specifically, low contrast masks had little effect on visibility thresholds. As
the contrast of the mask was increased, the target visibility threshold initially decreased
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Figure 2.5: Illustration of the effect of visual masking. In this example, additive Gaussian noise of
progressively higher amplitude is added to the original image (far left). In this scenario, the text
is the target, whereas the noise is the mask. It is visible that an increase in the intensity of the
mask results in a decrease in the legibility of the target.

at moderate contrast levels, before decreasing linearly for larger mask contrasts.

2.2.8 Just-Noticeable Difference/Distortion

The just-noticeable difference (JND), difference threshold, or difference limen, is a
statistical property describing the amount by which a stimulus needs to be changed for a
difference to be reliably noticed (Weber, 1996). More pragmatically, the JND is commonly
defined as the amount of change to a stimulus that experimental subjects can detect at
least 50% of the time.

This principle can be applied to measurement of a range of different physical stimuli, for
example, particular types of image distortions. Due to properties of the HVS such as
contrast and colour sensitivity, as well as effects such as masking, the HVS cannot sense
distortions or appearance differences below certain thresholds, for a given spatial frequency.
Distortion just above that threshold is referred to as the just-noticeable distortion and is
dependent on both the local properties of the image, and the visual acuity of the observer.
Distortions below the JND threshold can thus be disregarded when modelling perceptual
image quality (Yang et al., 2005). JNDs are commonly measured subjectively using a
signal detection paradigm. Additionally, some application driven JND models have been
proposed, attempting to emulate subjective results for specific conditions and applications,
such as image quality evaluation or video coding (Jia, Lin and Kassim, 2006).

Commonly, JND is measured in the spatial domain, and is affected by local properties
of the visual stimulus, specifically background luminance and masking (Wu, Shi and Lin,
2019). Many JND models for visual stimuli explicitly correct for these effects (Chou and
Li, 1995).

2.2.9 Visual Attention

Typical scenes encountered by the HVS contain many objects, constituting a large amount
of visual information. Due to its limited capacity for information processing, the HVS
does not treat all this information with the same importance. This often results in
competition between objects in the visual field for neural representation. Consequently,
the HVS exhibits a property of selectivity, which enables attended information to be
processed and unattended information to be largely ignored, thus conserving the limited

23



processing capacity (Desimone and Duncan, 1995). Visual attention (VA) is the collection
of mechanisms driving this selective behaviour and associated eye movements. The manner
in which VA is allocated between the competing stimuli depends on both the intrinsic
visual properties of the stimuli, known as bottom-up attention, as well as the task being
performed by the HVS, known as top-down attention.

Bottom-up VA is dependent on the intrinsic features of visual stimuli, collectively referred
to as their salience (or saliency). Saliency describes the property of an object ‘standing out’
from its neighbours. Saliency and bottom-up VA are rooted in evolutionary theory and
are linked to the facilitation of survival, by deploying VA to the most relevant information
in a scene and responding to sudden threats, such as a predator, for example (Borji, Sihite
and Itti, 2013).

In contrast, top-down VA is driven by a combination of the visual task at hand and,
consequently, volitional deployment of attention. As this process is controlled by higher
cognitive areas, it requires additional effort, compared to bottom-up VA (Itti and Koch,
2001). Top-down VA is employed in tasks such as visual search, where the goal is to find
objects with some pre-specified properties. This allows for the HVS to attend to objects
relevant to the task and disregard any irrelevant information. Both top-down and bottom-
up VA mechanisms tend to operate in parallel in everyday scenarios, whereby attention
is both modulated by the intrinsic properties of objects, and top-down properties such as
memory, task and context.

Many approaches have been proposed to the task of computational VA modelling,
particularly focusing on bottom-up attention and saliency, due to their relative simplicity
and suitability for computational modelling based on the feature integration theory of
attention (Treisman and Gelade, 1980). The goal of such models is to accurately predict
highly-probable locations of human fixations in an image, thus pointing out attention-
grabbing regions or objects in an image. Existing models tend to exploit either a local
approach, using centre-surround differences computed in local regions, or a global one,
assessing the entire image at once. While being biologically plausible, both approaches
come with their distinct advantages and associated problems. For example, local methods
tend to overestimate the saliency of object edges and high frequency image content, while
missing larger salient regions, while global methods tend to work well for larger objects,
but have trouble dealing with highly textured regions.

Notably, Itti, Koch and Niebur (1998) in their seminal work proposed a biologically-
inspired bottom-up saliency-based model of visual attention. This model, given an
input image, generates a corresponding saliency map through successive stages of colour,
intensity and orientation feature extraction, centre-surround differencing and linear
integration of these features at multiple scales. This model served as a foundation for
multiple further developments, such as the graph-based saliency model of Harel, Koch
and Perona (2007) or the conditional random field-based approach of feature combination
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put forward by Liu et al. (2011). More recently, Wang et al. (2015) utilised deep neural
networks to perform both local and global feature extraction and their integration into
predictions of saliency.

Visual attention modelling plays a crucial role in machine perception. Similarly to the
CSF, it allows for a perceptual weighting of image content to be computed.

2.2.10 Summary

This section has reviewed relevant background on human visual perception and discussed
key approaches and conceptual frameworks used in vision research, highlighting the
complexity of the HVS, as well as the benefits of taking a modular approach to its
analysis. Additionally, a review of related work has been presented, reporting on empirical
investigations into contrast sensitivity, visual masking, attention, scene analysis and
distortion detection. The following sections build on these fundamental properties in
the context of analysis and modelling of subjective visual properties of natural images,
such as quality and realism.

2.3 Image Quality

Subjective properties of natural images, such as quality, realism, naturalness or beauty, are
notoriously time-consuming and expensive to analyse and model. This is chiefly due to the
sheer size and variance of the set of natural images, but also due to the inherent variability
in human judgments, and the impact of experimental conditions during the collection of
those judgments. These factors make it a non-trivial task to generalise models developed
under experimental conditions to real-world scenarios.

The following sections discuss the concepts of image quality and visual realism, their
definitions in different application areas, methods for measurement and modelling, as well
as concrete examples of use in the domain of digital images.

2.3.1 Image Quality

Image quality is fundamentally related to the human experience of viewing an image.
It can be thought of as an image characteristic measuring distortion or degradation, as
compared to a reference image or a theoretical ideal image (an example is given in Figure
2.7). As humans have historically held the role of ultimate arbiters of image quality and are
the end-users of most multimedia systems, many approaches to image quality assessment
are developed and/or evaluated against human judgments as a baseline.

The process of image quality analysis by a human observer can be viewed as a special
case of an observer interacting with their environment. This can be summarised
as a cyclical process of (1) acquisition of environmental information and its internal
representation; (2) cognitive interpretation and comparison of this internal representation
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Figure 2.6: Overview of approaches to image quality assessment. Reproduced from Voronin et al.
(2019)

(a) Low compression ratio (b) Medium compression ratio (c) High compression ratio

Figure 2.7: Images from the LIVE Database (Sheikh et al., 2005) illustrating the impact of JPEG
compression on perceived quality.
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Figure 2.8: Illustration of the error sensitivity framework for image quality assessment. Image
reproduced from Wang, Bovik and Lu (2002)

with relevant representations stored in memory and (3) an appropriate response, driven
by this interpretation (Janssen and Blommaert, 1997). In the case of image quality,
the image is the environment and its low-level features, such as resolution, contrast,
brightness, colourfulness etc. are the acquired information. The internal representation
is a higher-level interpretation of this information by an observer, and the response is
the quantification of a subjective quality score based on this experience. Consequently,
Leisti et al. (2009) argue that subjective quality ratings do not explicitly reflect the
properties of the image, rather they reflect the subjective experience of quality based
on these properties, as well as the individual differences between observers, such as their
experience or expectations.

Alternatively, the overall quality of an image can also be seen as a function or combination
of some set of features visible to and interpreted by a given observer (Kim et al., 2008).
This is the foundation of error-sensitivity-based approaches to objective image quality
assessment, illustrated conceptually in Figure 2.8. Such error visibility methods rely
on modelling the perception of errors and their subsequent pooling into a quality score.
These methods have been extended to structural-similarity-based approaches, which focus
on the visibility of errors in areas of the image containing structural information. This
was shown to produce quality scores which correlate more closely with human opinion
scores, compared to error-visibility methods (Wang, Bovik and Lu, 2002; Wang et al.,
2004). Alternative approaches also explored statistically-based frameworks (Sheikh, Bovik
and Cormack, 2005), which relied on the assumption that the HVS has, throughout its
evolution, become tuned to the statistical distributions present in the natural world.
Accordingly, the disturbance of such natural image statistics produces a subject

Based on the above, it can be seen that definitions and measures of image quality fall into
two key categories (Wang and Bovik, 2006):

1. Subjective: measuring aspects of the subjective viewing experience directly

2. Objective: assessing the image data itself using mathematical models to derive
quality scores that correlate with human judgments.
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These two approaches can be linked to the respective concepts of Quality of Experience
(QoE) and Quality of Service (QoS), commonly used in information, communications and
multimedia research. The former measures the end-user experience, expectations and
perception, while the latter assesses the efficiency with which a service or system can
deliver information without introducing distortion or loss (Fiedler, Hossfeld and Tran-
Gia, 2010). Figure 2.6 shows a high-level classification of different approaches to image
quality assessment.

2.3.2 Subjective Image Quality Assessment

Subjective image quality assessment (IQA) methods rely on collecting quality ratings
directly from human observers, usually under strictly controlled experimental conditions.
While many experimental procedures exist for this purpose, most share common principles:

• Observers are presented with a series of images for which they have to provide opinion
scores

• Opinion scores are commonly allocated along a predefined scale

• Scores for different experimental conditions are averaged across subjects to generate
mean opinion scores (MOS)

Subjective IQA procedures originate from experimental psychology, specifically from
psychometric scaling methods (Torgerson, 1958) and have been standardised and
categorised by the International Telecommunications Union recommendation BT-
500, which sets out general experimental conditions, provides recommendations for
experimental stimulus, observer selection, rating scales, results analysis and selection of
test method (ITU, 2002). Key approaches to IQA and their variations and extensions are
discussed further in Section 2.5.

2.3.3 Attributes Affecting Subjective Image Quality

Subjective perception of quality for a given image is heavily influenced by both its low-
level (physical) and high-level (psychophysical) attributes. This is also affected by the
sensitivity of observers to these attributes, their ability to map low-level features to high-
level attributes, as well as the environmental conditions under which the image is viewed.
Additionally, the context under which image quality is being evaluated, as well as the
specific instructions given to observers, or their individual level of experience may further
influence which image attributes are leveraged to arrive at final quality ratings.

Leisti et al. (2009) found that while different individual observers may vary with respect
to the image attributes they rely on to rate quality, the reliability of quality ratings is
high when those are averaged across observers. This suggests that while observers may
adopt different subjective strategies, they tend to agree with respect to the final quality
scores. The authors also identify a range of low- and high-level subjective attributes used
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(a) DMOS = 0.0 (b) DMOS = 23.9 (c) DMOS = 37.8 (d) DMOS = 38.7 (e) DMOS = 55.5

Figure 2.9: Example of the impact of Gaussian blur on the appearance of an image from the
LIVE image quality database. The leftmost image has the lowest amount of blur, whereas the
rightmost image has the largest amount of blur. Each subcaption shows difference mean opinion
scores (DMOS), re-aligned from raw mean opinion scores. The DMOS can be seen increasing as
the amount of blur is increased, indicating a decrease in subjective quality. See Sheikh, Sabir and
Bovik (2006) for details.

by observers by means of post-test interviews. Amongst the most commonly used low-level
attributes are brightness, sharpness, lightness, brightness of colours. Realism/genuineness,
naturalness, clarity and depth, on the other hand, are the most common high-level
attributes used by observers to interpret and translate low-level attributes to quality scores.
This is further evidenced by Kim et al. (2008), who evaluate the impact of varying a range
of low-level image attributes on subjective image quality ratings. Observers are tasked
with rating images based on seven high-level psychophysical attributes: image quality,
naturalness, clearness, sharpness, contrast, colourfulness and preference. The authors
find significant correlations between multiple attributes, for example between clearness
(sic), sharpness and contrast, or image quality, naturalness and preference. Ultimately,
naturalness and clearness are found to be the two most significant attributes affecting
image quality and are incorporated into a predictive model. In essence, it appears that
these two high-level attributes provide a compact way to describe a host of low-level
attributes relating to the spectral and spatial fidelity of an image (see blur example in
Figure 2.9). Janssen and Blommaert (1997) also propose two key high-level attributes, but
substitute clarity for usefulness, which describes how precise an image representation is.
The authors define naturalness as the degree of correspondence between the representation
of the image and the model of reality stored in one’s memory. This suggests that observers
integrate low-level cues into higher-level semantic indicators of quality. It is important to
note that the attributes related to subjective image quality may change depending on the
stimulus and distortion type. Accordingly, this must be taken into consideration when
evaluating experimental results.

2.3.4 Objective IQA

Objective image quality assessment methods avoid some drawbacks of the subjective
approaches, by removing human subjects from the process and substituting them with
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computational models of human visual perception, or more pragmatic metrics, which are
approximations of some aspect of the human visual system. Depending on whether a
reference image is used, objective quality metrics either calculate a distance between the
test and reference images, or compare the features of the input image to an existing
model or heuristic, depending on the specific aim of the quality evaluation. Approaches
to objective image quality assessment can be broken into three main categories, according
to presence of a reference image:

1. Full-reference (FR) methods, which assess image quality by comparison to a
reference image assumed to have ideal quality;

2. Reduced-reference (RR) methods, which assess image quality by comparison to
a set of features extracted from a reference image assumed to have ideal quality;

3. No-reference (NR) methods, which assess image quality without any explicit
reference image

Objective IQA methods can also be categorised based on whether they measure quality in
the context of signal fidelity or human perception. A review of objective IQA metrics
is given in Section 2.6

2.4 From Image Quality to Visual Realism

While image quality and visual realism relate to similar perceptual properties of images,
they are fundamentally different concepts. Both can be used to describe the likeness of
a visual representation to its original source, however, the contexts in which they are
applied differ. Due to their origins in broadcast engineering, standard methods for IQA
focus on measuring acquisition, processing, compression and transmission artefacts, often
with reference to an original, unaffected image. The emphasis is thus on quantifying
the accuracy of an optical and/or digital sampling process, as well as the degradation
of a signal by a set of transmission or post-processing operations. In contrast, visual
realism commonly describes the results of a synthesis or fusion of different elements, such
as painting or 3-D modelling. It describes how well a synthetic approximation of reality
compares to the experience or perception of that reality. This description can be performed
at multiple levels of assessment and is often limited to the confines of the medium itself.
For example, one can find a pencil sketch portrait realistic, despite the obvious limitations
of lead on paper, such as the lack of colour information. At the same time, one can
find a wax sculpture of the same subject unrealistic, despite the presence of additional
features absent in the pencil sketch, such as true depth, scale, material etc. Interestingly,
the relationship between the likeness of a representation to its target and the resulting
subjective preference is not always monotonic. Specifically, subjective responses, or affinity,
of humans towards realistic humanoid robots are subject to a sudden decline, when the
robot appears very similar to a real human being. This effect is known as the uncanny
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valley (Mori, MacDorman and Kageki, 2012). This suggests that techniques used for image
quality assessment may not be well suited to predicting visual realism, or other subjective
image properties.

This section describes the similarities and differences between image quality and realism,
defines visual realism in the context of image compositing, and relates this to other
approaches to image synthesis. Human perception of visual realism is also discussed,
and the impact of different image features is reviewed. Existing approaches to subjective
measurement of realism are then reviewed. This is followed by a discussion of related work
in modelling and prediction of visual realism.

2.4.1 Limitations of Representation

Barbour and Meyer (1992) emphasise that the act of representing a dynamic three-
dimensional environment, such as any natural scene, on a static two-dimensional piece
of canvas, film, or paper poses several important issues, which make it impossible to
achieve a perfectly realistic representation. Firstly, as opposed to a real scene, perceived
directly with one’s eyes, a photograph, or painting is made from a single fixed point of
view, as opposed to the two that our eyes offer. This removes binocular cues used by the
HVS to extract depth information. Secondly, paintings and photographs are flat and have
a fixed size and implicitly limited field of view, further limiting neural cues associated with
depth perception. Moreover, neither paintings nor photographs are capable of conveying
the same dynamic range as our visual system is capable of perceiving in the real world.
Finally, all images are often seen under some kind of viewing illumination, which, through
chromatic adaptation, has further impact on the final appearance. Consequently, a 2-
D picture cannot convey all the same visual cues as a real-world scene, and thus truly
physically-realistic pictures are theoretically unattainable. At the same time, this does not
preclude the discussion of visual realism in the context of 2-D images, it simply constrains
it to fewer relevant cues (see Figure 2.10). These constraints, due to the monocular nature
of 2-D images, have forced artists throughout the centuries to come up with techniques to
recreate the missing cues, given the limitations of the medium.

2.4.2 Definitions of Visual Realism

In recent years, more pragmatic studies of visual realism have been carried out, particularly
in the areas of 3-D graphics and image compositing. The issue inevitably faced by the
authors was the definition of realism in the context of these modern image generation tools.
Ferwerda (2003) shows that evaluation of realism can be performed at three distinct levels
of visual coding: physical, photographic and functional. Physical realism describes a
circumstance where the image provides the observer with the same visual stimulation
as the original scene, meaning that the array of spectral irradiance values incident on
the retina during viewing of the original scene would have to be somehow reproduced in
the presentation of the physically realistic image under evaluation. Currently, no such
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(a) “Self-portrait” by Rudolf
Wacker. Source: Wikimedia /
Public Domain

(b) “Self Portrait #7” by
Rob. Source: Free-Images.com
/ Public Domain

(c) “Portrait (pencil)” by Ricce.
Source: Wikimedia / Public
Domain

Figure 2.10: Pencil portraits of varying degrees of realism. Each of the portraits could be deemed
as subjectively realistic, however, due to more detailed reproduction of certain cues, some could be
deemed more realistic than others. While (a) is a plausible likeness of a human face, it reproduces
certain cues with less detail than portrait (b). Arguably, portrait (c) is the most realistic, since it
reproduces lighting, depth and shading cues with high fidelity and plausibility, compared to (a) and
(b). Despite the common medium, each representation differs in terms of visual cues represented
and the accuracy of their representation.

technology exists. In Photo-realism the image elicits the same visual response as the
original scene. In the context of 3-D graphic or other synthetic content, one can call an
image photo-realistic if it is indistinguishable from a photograph (e.g. Figure 2.11), or
if it provides the same photometric information as the original scene, despite differences
in the physical aspects of the stimuli (i.e. photograph vs real scene). Finally, functional
realism describes an image that provides the same visual information as the original
scene. This means that, while the style of depiction may not be faithful (for example using
line sketches to depict human actions in an instruction manual for a piece of furniture),
the information content is still conveyed (i.e. the actions taken by the sketched human
beings in the instruction manual are still distinguishable). Cartoons rely particularly on
this type of realism, thus being able to generate compelling storylines with mere visual
approximations of the real world.

Since the definitions of visual realism and the properties they hinge on vary based on the
method and style of depiction, it is useful to categorise them accordingly. Reinhard et al.
(2013) proposes a categorisation into four distinct approaches to the process of synthesising
visually realistic imagery: manual modelling, physical simulation, image-based rendering
and data-driven synthesis. Manual modelling relies on the use of interactive 3-D modelling
software in order to generate a realistic scene from scratch. This requires significant
effort and does not guarantee realistic results, due to the degree of randomness present in
the appearance of the real-world, compared to 3-D models. Methods based on physical
simulation can generate very realistic results, for example simulating the physics of water
or smoke, however are difficult to extend to other phenomena. Image-based rendering relies
on capturing samples of the real world, creating a reconstruction of the captured world,
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Figure 2.11: An example of a contemporary photorealistic painting: John Baeder, John’s Diner
(2007) CC BY-SA (https://creativecommons.org/licenses/by-sa/3.0)

and then resampling that reconstruction based on the plenoptic function (Adelson, Bergen
et al., 1991) to generate novel views of this environment. Finally, data-driven synthesis also
uses samples of the real world, but with fewer constraints on how these can be modified
and combined. Digital image compositing fits this category well, as it often reuses and
modifies samples of the real world, by inserting novel content into them. Manual modelling
and physical simulation are also of interest, due to their replication of physical processes
that create the visual complexity of the natural world, such as simulating the interaction
between lights and surfaces. Both these processes rely on a ground-up synthesis of objects
and scenes and replication of global processes, such as illumination, reflection, and thus
are linked to the domain of computer graphics. On the other hand, image-based and
data-driven techniques reflect the photographic nature of the task of image compositing
by using photographic samples of the real world and combining/manipulating them until
a certain plausible effect is achieved. However, due to their inherent 2-D nature, they are
limited to manipulation of 2-D image data, without direct access to the underlying 3-D
structure. Specific data-driven synthesis techniques are further discussed in Chapter 4.

2.4.3 Perception of Visual Realism

In addition to the multiple methods of synthesis described above, what makes a consistent
definition of visual realism challenging to arrive at is the multitude of visual features that
create the perception of plausibility for the average human observer. These features can
be coarsely broken into two categories: physical and semantic, following the approach of
Biederman, Mezzanotte and Rabinowitz (1982). Physical cues relate to the plausibility of
the physical relationships between objects in/and the scene, such as illumination, support
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(a) (b)

Figure 2.12: Examples of semantic and physical visual features undergoing violations. (a) A
transparent briefcase: example of a physical cue violation (briefcases commonly occlude what is
behind them), (b) “Goodyear Sofa”: Example of physical and semantic cue violation (sofas are
usually smaller and don’t float over the street). Images courtesy of Biederman, Mezzanotte and
Rabinowitz (1982).

or material reproduction. Semantic cues are related to the likelihood of seeing a given
combination of objects, such as a horse riding another horse – even if the physical properties
of this equine combination are rendered perfectly, the average observer would likely rate
the realism low, due to the impossibility of seeing the aforementioned combination in
the real world. Semantic cues are also likely to vary more from observer to observer,
particularly if prior visual experience is a primary driver. Interestingly, some of these cues
are very easy to spot for observers, while others can go unnoticed (Cavanagh, 2005).

It is well-known that some ecological short-cuts or assumptions are made by the HVS
in order to efficiently interpret visual information, particularly the extraction of 3-D
shape from 2-D retinal images (Ramachandran, 1988). For example, the ‘single light
from above’ assumption, related to the extraction of shape from shading information
(Kleffner and Ramachandran, 1992), suggests the HVS uses a weak prior assumption
(Morgenstern, Murray and Harris, 2011) of a single light illuminating the scene from
above (see Fig. 2.13a). The convexity bias (Liu and Todd, 2004), and generic viewpoint
assumption (Freeman, 1994) are likely linked to the fact that humans tend to view objects
from a specific subset of viewpoints and angles (see Fig. 2.13b). The existence of
these assumptions suggests that not all visual information is processed in exactly the
same manner by the visual system. The fact that some of these assumptions override
others suggests that some hierarchy of importance must exist. Moreover, the disparity
between the number of receptors in the retina (~130M) and the relatively smaller (~1M)
number of axons in the optic nerve suggests the existence and necessity of processes
which dramatically reduce information redundancy in early vision (Conners and Ng,
1989). Consequently, it is not surprising that the HVS can readily detect departures from
reality in some of these features, such as unrealistic physical relationships between objects
(Biederman, 1972), while completely disregarding others, such as physically impossible
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(a) Image reproduced from Ramachandran (1988) (b) Image courtesy of Króliczak et al. (2006)

Figure 2.13: Two prior assumptions in vision illustrated. (a) “Single light from above”: Shading
alone determines the percept of convexity in the circles on the left, and a percept of concavity in
the circles on the right (b) “The hollow face illusion”: Even a concave face appears convex under
certain viewing angles - this illustrates the effects of top-down processes in vision, enforcing a
knowledge- or experience-based prior that faces tend to be convex. Interestingly, this prior seems
to outweigh the assumption in (a).

reflections or shadows (Cavanagh, 2005; Reinhard et al., 2013).

2.4.4 Image Features Affecting Realism

There is evidence that a wide range of features have an impact on observer perception of
visual realism. Biederman, Mezzanotte and Rabinowitz (1982); Biederman (1972) show
that scene organisation and relationships between objects within a scene, specifically their
support, interposition, probability of occurrence, position in scene and relative size have a
significant impact on observer object detection and scene parsing and recognition ability.
Interestingly, higher-order relationships between objects in a scene, such as illumination
angle or shadow direction, do not elicit the same response and often go unnoticed
(Ostrovsky, Cavanagh and Sinha, 2005; Cavanagh, 2005). Similarly, Vangorp, Laurijssen
and Dutré (2007) showed how shape and material exhibit a reciprocal relationship: the
shape of an object can change the perception of its material and vice-versa. Other
image features may not directly affect perception of realism, but instead contribute to the
detection of higher-level features, which, in turn may modulate the perceived realism of a
scene. For example, Fleming, Dror and Adelson (2003) show that humans perform poorly
at judging the semantic plausibility of the content of specular reflections (provided the
illumination appears realistic). The authors suggest that the HVS uses assumptions about
real-world illumination properties in order to estimate surface reflectance. Furthermore,
reflections have a significant influence on our the correct identification of object shapes
by humans (Fleming, Torralba and Adelson, 2004). In this scenario, what is reflected off
an object is less important to the perception of a realistic object than the very presence
of the reflection itself. Additionally, Pont and te Pas (2006) show that human observers
tend to confound perceptual effects of illumination and material appearance in real-world
scenes.
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2.5 Methods for Subjective IQA

Before discussing existing approaches to measurement of visual realism, the following
section discusses related work and approaches to measurement and modelling of subjective
visual properties. Common approaches to experiment design, observer selection, stimuli
presentation and viewing conditions are discussed and compared in the context of prior
work.

2.5.1 Subjective IQA Measurement

Subjective quality evaluation methods rely on an experimental paradigm to collect
subjective judgements from a group of human subjects under controlled experimental
conditions. The overall aim of such methods is to evaluate image quality as perceived by
a representative human observer, while minimising potential bias. Bias may arise due to:

• experimental design (e.g. order effects, such as fatigue or improving subject
performance due to task practice)

• experimental conditions (e.g. display resolution, contrast, sharpness, ambient
illumination etc.)

• human subject variability (e.g. low visual acuity, weak contrast vision, colour-
blindness, experience, age, sex, mood etc.)

Subjective quality evaluation under controlled conditions provides representative results,
however, tends to be time-consuming and expensive, due to the involvement of human
subjects.

The key differences between existing subjective IQA methods are a) the manner in which
stimuli are presented to observers during each trial of the experiment and b) the rating
scale used for the collection of responses. Below, existing approaches to subjective image
quality assessment and related work are discussed. Rating scales are briefly summarised,
followed by a review of experimental procedures.

2.5.2 Stimulus Presentation

Aside from the adopted rating scale, the way stimuli are presented plays an important
role in the structuring and categorisation of subjective IQA methods.

Single Stimulus

In single stimulus methods, a single test image is presented to observers, who are then
requested to rate the quality of this image on a categorical, ordinal or continuous scale. No
reference image is shown in the single stimulus method, thus it performs well in scenarios
modelling real-world viewing conditions, such as video streaming, where end users’
experience of quality is not based on direct comparison with a reference (Seshadrinathan
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et al., 2010a). Due to their simplicity, single stimulus tests are relatively easy to implement
and their results straightforward to analyse. Both the popular LIVE Image Quality
Database (Wang et al., 2004) and LIVE Video Quality Database (Seshadrinathan et al.,
2010b) adopted this approach, using a categorical and continuous scale respectively in
order to capture baseline quality ratings.

Figure 2.14: Single stimulus procedure, consisting of a grey screen, followed by the test image,
followed by a voting phase.

Double stimulus

Double stimulus methods display two stimuli per trial: a reference image followed by
a test image, although this order is sometimes randomised. Observers are either asked
to evaluate the quality of each of the two images, or rate the quality of the test image,
given the reference image. Sheikh, Sabir and Bovik (2006) used this approach to generate
ground truth (GT) data for evaluation of full-reference objective IQA algorithms. Due to
the requirement for rating of two images at a time (i.e. both the reference and test image),
this method has been reported to yield more variable responses (Mantiuk, Tomaszewska
and Mantiuk, 2012), compared to single-stimulus methods.

Figure 2.15: Double stimulus procedure, consisting of a grey screen, followed by the reference
image, another grey screen, the test image, and finally the voting phase.

Forced-choice Pairwise Comparison / Simultaneous Double Stimulus

In contrast to the above methods, the forced-choice pairwise comparison approach presents
observers with both the reference and test image at the same time, rather than sequentially.
Under this paradigm, observers are required to select the image of higher quality, even
if they cannot reliably detect a difference between the two images. The result of this
approach is an ordering of test images according to their quality, as rated by observers. An
extension of this approach is the pairwise similarity judgmentsmethod, which requires
observers to both mark their preference, and indicate the magnitude of the difference
between the two images presented in each trial. The forced-choice pairwise comparison (or
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two-alternative forced-choice) test is also reported to be more time-efficient and produce
most accurate results, compared to the single and double stimulus methods. Specifically,
given N = 2 conditions, Mantiuk, Tomaszewska and Mantiuk (2012) found that the
forced-choice comparison method required on average around 5s, compared to over 10s
for the next best method (see Figure 2.17). In addition, using effect size comparisons,
they showed that the forced-choice approach provided highest sensitivity and accuracy,
compared to single- and double-stimulus approaches, as well as similarity judgements.
Finally, this method was also shown to be easiest for observers to perform, requiring only
a direct comparison of simultaneously visible images. These properties make it an efficient
approach to adopt when large numbers of comparisons need to be carried out.

Figure 2.16: Double stimulus procedure, consisting of a gray screen, followed by the reference
image, another gray screen, the test image, and finally the voting phase.

2.5.3 Grading Scales

Grading scales constrain the number and type of responses that observers can supply
during experiments. Grading scales also differ depending on the measured property they
pertain to. Ignoring unranked (i.e. nominal) qualitative descriptions, quantitative image
quality grading scales can be coarsely split into two categories: discrete and continuous.

Discrete Scales

Perhaps the most commonly used discrete scales are the International Telecommunications
Union (ITU, 2002) quality and impairment scales. These constrain the evaluation of
quality and impairment perception to ordinal scales, such as the ITU-R BT (2002) five-
point quality or impairment scale (see Table 2.1), or an n-alternative choice scale. Each
point along the scale is assigned a semantically meaningful description, and the underlying
number is not shown to subjects during the experiment.

While it is implied that the perceptual distances between consecutive points along these
scales are a constant interval, or ratio (in the case of the impairment scale), Jones and
McManus (1986) claim that this is not always true, particularly if the semantic labels are
translated into other languages and recommend using numerical scales, instead of semantic
ordinal ones, when the distance between ratings is important. Subsequent studies (Watson
and Sasse, 1996, 1998) highlighted the relatively low reliability of this scale for problems
where a high degree of accuracy is required.
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Figure 2.17: Average time required to compareN conditions under different experimental protocols.
Image courtesy of Mantiuk, Tomaszewska and Mantiuk (2012).

ITU Five-grade scale
Score Quality Impairment

5 Excellent Imperceptible
4 Good Perceptible, but not annoying
3 Fair Slightly annoying
2 Poor Annoying
1 Bad Very annoying

Table 2.1: ITU five-grade quality and impairment rating scales. Reproduced from ITU-R BT
(2002)
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Continuous Scales

Continuous scales can be seen as providing observers with more flexibility in their
responses, by not constraining them to a fixed set of pre-defined options. These scales
commonly range between 0 and 1, or 0 and 100 and indicate key labels (usually the ones
used in discrete scales) along the continuous scale. Common experimental methods which
make use of continuous scales include the Single Stimulus Continuous Quality Evaluation
(SSCQE), the Double Stimulus Continuous Evaluation Scale (DSCQS) and the Double
Stimulus Comparison Scale (DSCS) (ITU, 2002). They are particularly useful for video
sequences, where quality may vary along the temporal dimension.

In a four-way comparison study under the single stimulus paradigm, Huynh-Thu et al.
(2011) found no significant differences between using discrete and continuous scales for
video quality assessment, noting that observers tend to cluster their responses around the
labels and tick marks of each scale used. This evidence is corroborated by Pinson and Wolf
(2003), who suggest that observers rely on the same judgment process to map perceived
errors to overall quality estimates under different continuous scale paradigms.

2.5.4 Experimental Conditions & Presentation

During an experiment, many factors can impact the appearance of an image to an
observer and consequently, their responses. These include the display device, ambient
and direct illumination, resolution, viewing angle and distance, to name a few. Similarly,
the properties of observers, such as their visual acuity, experience or alertness can influence
their own perceptions and responses. Finally, the manner in which images are displayed,
presentation duration, size, location and order of the stimuli can all bias responses. Thus,
when performing experiments, it is vital to constrain and normalise viewing conditions for
all observers and conditions under test. The ITU Recommendation BT.500 (ITU, 2002)
provides standard approaches for this, which stem from vision science and traditional
psychophysics and have been adopted and extended widely in the field of IQA.

General Viewing Conditions

Environmental conditions under which image quality evaluation may take place can be
coarsely organised into two scenarios: laboratory and home. The former is often used for
accurate and highly controlled measurements, while the latter is supposed to account for
the ‘wild’ conditions, under which end-users may view image content. In either scenario,
the viewing conditions are summarised by calibration and measurement of the display
device and the mathematical relationship of its properties with those of the room and the
observer.
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Display Device

The display device used to render the images can also impact the viewing experience. Most
commercial displays are capable of extensive colour calibration, which can significantly
alter the appearance of viewed image content. It is thus imperative to perform calibration
of the display device appropriate to the experimental setting. In order for experiments
to be reproducible, standardised measures are used, providing references for the following
properties of the display device:

• Calibration of brightness and contrast
using standard greyscale test patterns

• Ratio of inactive screen luminance to
peak luminance

• Ratio of peak luminance of screen
displaying black, to that of screen
displaying peak white in completely
dark room

• Ratio of luminance of background
behind screen to that of peak screen
luminance

• Ambient illumination chromaticity

• Ambient illumination level

• Resolution

• Viewing Distance

The device must also be capable of reproducing the full colour gamut of the experimental
stimuli. Appropriate display device calibration and controlled viewing conditions ensure
reliability of the results and reduce response variability. However, as mentioned earlier,
this is not representative of home viewing environments, where larger response variability
can be expected, due to the lack of control over the above variables.

Test Materials

The content of image-based experimental stimuli has been shown to affect subjective
quality judgments. Jumisko, Ilvonen and Vaananen-Vainio-Mattila (2005) have shown
that a connection between subjective interest in particular content and associated quality
scores exists. Similar results have been obtained in experiments with audiovisual content,
where modality (auditory, visual, audio-visual), interest and dynamics of camera/content
had significant impact on subjective mean opinion scores (Lassalle et al., 2012). The order
and type of stimuli, as well as the scale used to grade them, have also been shown to
bias responses (Corriveau et al., 1999). In order to minimise such contextual effects, the
selection of test materials (i.e. images) and the distortions or transformations applied to
them (e.g. compression) must be carefully considered and appropriate for the selected
experimental procedure and variables under investigation. Additionally, the content of
images used in the experiments should be reflective of the task at hand. This is often
achieved by either sampling a large enough number of images to diffuse the effects of
individual images, or constraining evaluation to images of particular content (i.e. images
of particular scenes or objects). Presentation order randomisation, as well as repeated
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(a) A Snellen chart. Source:
Wikipedia, Public Domain

(b) Ishihara colour blindness test, Plate No. 13 with
an orange number 6 on a green background. Source:
Wikipedia, Public Domain

Figure 2.18: Examples of standard test charts for (a) visual acuity and (b) normal colour vision.

stimulus presentation, are also effective approaches to minimising contextual effects (Choi,
Jung and Jeon, 2009).

Observers

Appropriate selection of observers is paramount to the validity of any image quality
assessment task. Due to the large number of possible variations between observers, such
as their visual acuity, experience in particular image or distortion types, their motivation,
age, gender, cultural background and occupation can all have an impact on results (ITU,
2002). In practice, it is very difficult to control for all these variables simultaneously.
Nevertheless, care should be taken in order to balance observers both within and across
groups, based on these properties. The ITU recommend using at least 15 observers for
formal studies, however, point out that this also depends on the sensitivity and reliability
of the test procedure.

Furthermore, all observers must be screened for normal visual acuity (Holladay, 2004)
and colour vision (Birch, 1997). Standardised tests exist for both visual acuity (e.g. the
Snellen chart Snellen (1868) or the “tumbling E” test (Keeffe et al., 1996)), and colour
blindness (Ishihara et al., 1918). Examples of such standardised tests can be found in
Figure 2.18. Observers must also be provided with clear instructions and be naive to the
purpose of the tests, unless required otherwise. Opportunities to ask questions should be
provided in order to normalise responses across the observer sample.

42

https://commons.wikimedia.org/wiki/File:Snellen_chart_in_ISO_standard.pdf
https://en.wikipedia.org/wiki/Ishihara_test##/media/File:Ishihara_11.PNG


Test Session

In order to minimise bias due to observer fatigue, the tests should be limited to around 30
minutes at a time (ITU-R BT, 2002). For significantly longer designs, sessions should be
split into multiple shorter parts. It has been shown that short training sequences, as well
as stabilising sequences, results for which are not considered in the evaluation, are effective
at accommodating observers with the specific task and apparatus, thus preventing order
effects (ITU-R BT, 2002). In scenarios where control of the experimental conditions is
difficult, such as remote users, detailed screening and evaluation of observers should be
performed and incentives can be provided to increase engagement and task completion
(Ribeiro, Florencio and Nascimento, 2011).

2.5.5 Analysis of Results

Due to the large variance of responses of individual observers to a particular stimulus, as
well as the variance between observers, it is common to aggregate scores across observer
groups, as well as multiple viewings of the same stimulus for individual observers. The
mean opinion score (MOS) is a generalised concept referring to the arithmetic mean of all
opinion scores for a given stimulus provided using some pre-defined scale

MOS =
∑N
n=1Rn
N

(2.1)

where N is the number of subjects and R refers to an individual opinion score for a given
stimulus.

The MOS has been standardised by the ITU and successfully applied in subjective quality
analysis in different domains, such as speech, audio, images and video (Streijl, Winkler
and Hands, 2016). Due to its conceptual simplicity, provided ITU recommendations for
the minimum number of observers are followed, the MOS can be easily adapted to different
scales and stimuli.

2.5.6 Other Comparative Frameworks

Subjective methods based on the above techniques have also been applied to evaluation of
other image-based properties. For example, (Banterle et al., 2009) design a 2AFC-based
experiment to facilitate subjective evaluation of different inverse tone-mapping operators.
Similarly, subjective techniques have been used to compare the quality of HDR video
compression (Mukherjee et al., 2016) algorithms, or to optimise resource allocation in
multi-modal virtual environments (Doukakis et al., 2019). While these frameworks do
not deal directly with measurement of the same subjective properties, many aspects of
experimental methodology are very much relevant to this work.
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2.6 Methods for Objective IQA

As introduced in Section 2.3.4, objective IQA metrics can be used to mitigate some issues
associated with subjective methods. This section outlines key approaches to development
of objective IQA metrics in the context of related work.

2.6.1 Signal Fidelity Measures

IQA methods based on signal fidelity assess the impact of various processes such as
transmission, broadcast, storage, display, compression on the quality of images or video
by means of statistical comparisons of the input and output signals. One of the most
commonly used metrics for assessing signal fidelity is the mean squared error (MSE)
calculated on the intensities of the input and output image pixels.

MSE(x, y) = 1
N

N∑
i=1

(xi − yi)2 (2.2)

Here, x and y are the two images to be compared. This metric has been used extensively
in the comparison of signal processing systems and their impact on signal quality. This
is largely due to its attractive properties, such as its mathematical simplicity and ease
of implementation. Moreover, its properties of non-negativity, symmetry, convexity and
differentiability make it a very useful cost function for optimisation tasks (discussed
further in Section 3.2). Furthermore, MSE allows for direct comparisons of similarity
and interpretation in Euclidean distance space.

In scenarios where images of different dynamic ranges are compared, MSE is commonly
converted to peak signal-to-noise ratio (PSNR).

PSNR = 10log10
L2

MSE (2.3)

Here L is the dynamic range, expressed as the number of possible pixel intensities, e.g.
for an 8 bit image L = 28 − 1 = 255.

Despite its many advantages, it is well known that MSE is a poor predictor of human
quality judgments, as it does not take the properties of the HVS into consideration (Teo
and Heeger, 1994; Eskicioglu and Fisher, 1995; Wang and Bovik, 2009). (Lin and Kuo,
2011) claim that this is because not every difference between the reference and distorted
image is noticeable by human observers, their attention is not deployed equally across
the image. Similarly, some changes to image content do not correlate with a decrease
in quality. For example, many post-processing operations which directly change pixel
intensities, such as denoising or edge sharpening, aim to improve, rather than degrade,
the quality of an image. Finally, due to spatial, temporal or chrominance masking, the
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magnitude of intensity differences between the reference and distorted image is not always
commensurate with the magnitude of change in quality, as perceived by a human observer.

2.6.2 Perceptual Visual Quality Metrics (PVQM)

In order to address the issues associated with signal fidelity-based measures, several
methods which leverage known properties of the HVS have been developed. PVQMs
can be broadly split into two categories: those which attempt to systematically model
relevant properties of the HVS (vision- or model-based); and those which measure how
pronounced certain features related with image quality degradation are, and predict quality
scores based on this information (signal-based).

Vision-based PVQMs

Vision-based PVQMs rely on heuristic modelling of the known properties of the HVS in
order to weight distortions in images by their visibility to human observers. Specifically,
these models involve decomposition into spatial, colour and/or temporal channels, the
contrast sensitivity function (CSF), luminance adaptation and a range of masking effects.
Various approaches to modelling the HSV in IQA have been proposed, and many share
key fundamentals. The visible differences predictor (VDP) proposed by Daly (1992) is
one such approach. This FR method consists of three stages: calibration, HVS modelling
and difference visualisation. The calibration stage parametrises the viewing distance from
which the model is to make a prediction as well as properties of the display device, such
as pixel spacing. This is followed by the HVS model, which models variations in visual
sensitivity as a function of luminance, contrast and signal content. The output of this
stage is a detection probability map for the reference and distorted images. The final
stage consists of generating and visualising the difference between these two probability
maps. This approach has been since extended to high dynamic range images (Mantiuk
et al., 2005, 2011), incorporating the modelling of light scattering in the optics, local
adaptation and non-linearities in luminance response.

Many existing vision-based PVQMs follow a similar high-level structure to Daly’s work,
but adopt different rules for colour space, spatio-temporal decomposition, error pooling
and visualisation. For example, (Lubin and Fibush, 1997) incorporate a Gaussian pyramid
when performing decomposition, in order to simulate different spatial frequency bands.
While these models have improved over approaches such as MSE, their complex design
makes them expensive to compute and their reliance on often incomplete knowledge of the
HVS makes them difficult to generalise to real world stimuli.

Signal-based PVQMs

Signal-based PVQMs attempt to avoid the issues associated with Vision-based PVQMs
by replacing HVS models with the extraction and analysis of perceptually-relevant signal
fidelity criteria, such as visual information or specific artefacts. They build on FR

45



approaches such as MSE and PSNR by comparing higher-level properties of the images,
which are known to correlate with visual perception and consequently image quality.
Under this paradigm, Sheikh, Bovik and De Veciana (2005) propose an information-
theoretical approach using natural scene statistics, which models image distortions as
information bottlenecks and expresses signal fidelity, as the amount of information a test
image contains about a reference one. This work is then extended by Sheikh and Bovik
(2004) through implementing a visual information fidelity measure (VIF). VIF quantifies
information contained in the reference image and combines this with the amount of this
information that can be recovered from the distorted image. Wang et al. (2004) exploit
the importance of structural information in human visual scene perception and propose
the Structural Similarity Index Measure (SSIM), which rates image quality based on the
degradation of structural information between the reference and distorted images. SSIM is
a weighted combination of three measures: luminance, contrast and structure. Many NR
signal-based PVQM measures focus on specific types of distortions such as blur, sharpness
or compression artefacts. For example, Marziliano et al. (2002) approximate perceptual
blurriness by measuring widths of vertical edges in the image, while Caviedes and Gurbuz
(2002) use local edge kurtosis as a proxy for perceptual sharpness.

2.7 Methods for Measuring Realism

Visual realism impacts systems well beyond aesthetic aspects. There is evidence that
human task performance can be affected by the visual realism of a virtual environment or
other task-specific image stimuli. This effect has been studied, particularly in the context
of visual search (Lee et al., 2013; Ragan et al., 2015) as well as navigation in virtual
spaces (Meijer, Geudeke and Van den Broek, 2009; Lokka et al., 2018). The performance
increase noted in more realistic VEs is sometimes explained by the subjective increase
in presence, which is often linked to task performance in VEs (Welch et al., 1996). It
is important to mention, however, that higher visual realism does not always correlate
with better task performance. Smallman and John (2005) argue that in many cases
naive reliance on highly realistic visual displays can be detrimental and provides evidence
based on geospatial data interpretation. This is corroborated in a subsequent study of
visually realistic map renderings, which result in longer navigation task completion times
and lower task accuracy compared to abstracted, less realistic line drawings of the same
data (Wilkening and Fabrikant, 2011). Since visual realism is not a universal concept,
and its impact on task performance is heavily modulated by the task and related stimuli
themselves, the need for efficient approaches to its measurement and modelling is clear.

To date, there have been few attempts to quantify and model visual realism. Most current
approaches evaluate the impact of a single, or a handful of features on subjective realism
within a constrained image set. For example, Rademacher et al. (2001) varied shadow
softness, surface smoothness, number of objects in scene, variety of object shapes and
number of illuminants in both photographs and computer-generated scenes and measured
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Figure 2.19: Experimental stimuli from Rademacher et al. (2001) varying surface smoothness
from smooth (left) to rough (right). Experimental subjects found the shapes with rough surfaces
significantly more realistic, compared to the smooth-surface shapes

the impact of each on subjective realism perception. The authors chose to simplify the
scene, relying on simple 3-D volumes, plain backgrounds and no colour information. The
test procedure adopted was a single stimulus discrete scale procedure, meaning each
observer was presented with a single image at a time and was asked to rate it as either
’real’ or ’synthetic’. Surface roughness was found to have the largest positive impact on
realism of all parameters under test, followed by shadow softness. Interestingly, neither
number of objects, variety of object shapes nor the number of lights had a significant
impact on subjective realism, leading to the conclusion that in practical scenarios, efforts
are better focused on shadow softness and texture, over scene arrangement and additional
illuminants. This work was later adapted by Wang and Doube (2011) who employed
these findings as hand-crafted features in their perceptually-inspired realism predictor
for computer game images. Specifically, their predictor relied on measures of surface
roughness (gradient variance), colour variance and shadow softness. This approach
achieved moderate success in ranking the realism of real images higher than computer
games, however the use of simplifying assumptions prevents this approach from being
robust to outliers.

In contrast, McNamara et al. (2000, 2005) compared subjective realism responses to a
physical 3-D scene, photographs, as well as 3-D renderings of the same scene. The
authors opted for a lightness matching paradigm, which relies on observers utilising 3-
D geometry and lighting information to make their judgments. It follows that a scene
with inaccurate geometry and illumination would lead to less accurate lightness estimates
by observers, while the real physical scene would yield most accurate estimates. While this
approach only provides relative estimates of visual realism, it proposes a robust framework
for evaluation of visual realism based on well-established visual cues and a task-based
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experimental design.
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(a) Low realism images

(b) High realism images

Figure 2.20: Example of the output of the visual realism model by Lalonde and Efros (2007). Red borders indicate unrealistic composite images, blue indicate
realistic composite images and green indicate real photographs. (a)images deemed least realistic by the model, (b) images deemed most realistic by the model.
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In the domain of image compositing, image-statistical approaches have found significant
adoption, particularly due to the reliability of statistical properties of natural images.
Torralba and Oliva (2003) showed how different object, scene and object+scene image
categories can be distinguished based on second-order image statistics. This property was
later exploited in scene recognition, specifically to build the gist of a scene by leveraging
its global image statistics (Oliva, 2005; Oliva and Torralba, 2006). In the domain of visual
realism assessment, Lalonde and Efros (2007) analysed colour distributions in natural
images and proposed two approaches to evaluating their realism using colour compatibility.
The first approach relies on comparing the colour statistics of an image to global colour
statistics derived from a large dataset of natural images. This can be achieved by modelling
natural colours of photographs as a single distribution, finding co-occurring background
colours, given some foreground colours, or finding nearest neighbour scenes, given an object
and adopting their colour distribution statistics. A local method is also proposed, which
compares the colour distribution of the object and its background. A combination of both
methods was eventually found to perform best. This approach was extended by Wong
et al. (2012) who exploited local differences between colour distributions of unrealistic
and realistic composite images. Using local colour statistics sampled around the interface
between a background and a composited object, they calculate a colour similarity measure
based on the intersection of histograms of the foreground and background regions. They
combine this metric with colour tendency - a measure based on two properties: colour
linearity and greyness, which traces the dominant hue in an image region, based on the
heuristic that unrealistic composites tend to have diverging colour tendencies. These
metrics were then implemented as features in a visual realism classifier and a recolouring
algorithm.

A different image-statistical approach to automatically adjust features of image composites
and improve their realism was proposed by Xue et al. (2012). The authors identified
multiple key statistical properties, highly correlated between the foreground objects
and background scenes of image composites: luminance, correlated colour temperature,
saturation and local contrast. The impact of mismatches in these properties on subjective
realism ratings was also evaluated. Finally, for a given combination of foreground object
and background scene, the proposed algorithm minimises the object-scene mismatches for
each feature by shifting and aligning histograms. Interestingly, in order to ensure that only
one variable is changed, the authors used real photographs, which have been segmented
into an object and scene part and subsequently processed in a manner such that a feature
mismatch is introduced between the object and scene.

An alternative approach was adopted by Fan et al. (2014), who presented a large
crowdsourced study of visual realism in real and computer-generated imagery. Two key
contributions were made here: 1) an extensive, human-annotated dataset for the study of
visual realism; and 2) results of psychophysical analysis of higher-level image attributes
correlating with visual realism, such as the property of appearing to be a photograph,
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natural lighting or observer familiarity, to name a few. The authors also proposed a
computational model for the estimation of visual realism, based on their experimental
results. This work was extended by Fan et al. (2018) who evaluated a range of state-of-the-
art classifiers and found that modern ones, such as Support Vector Machines, Multilayer
Perceptrons and Convolutional Neural Networks, when coupled with empirical features, all
achieved similar performance at binary realism classification of images from their dataset.
Hand-crafted features such as GIST (Oliva and Torralba, 2006), SIFT (Lowe, 1999), HOG
(Dalal and Triggs, 2005) and LBP (Ojala, Pietikainen and Maenpaa, 2002) fed into a
support vector machine all scored significantly lower, further underscoring the inherent
value of empirical features in generalising visual realism. Despite this success, human
performance was not surpassed.

Some researchers have also explored the question of realism from a signal-, or error
detection perspective. For example, studies by Ostrovsky, Cavanagh and Sinha (2005);
Koenderink, van Doorn and Pont (2004); Lopez-Moreno et al. (2010) evaluated human
sensitivity to illumination direction inconsistencies and found that observers could not
reliably detect inconsistencies of less than 20 − 30◦. These studies all used a similar
approach, whereby multiple versions of the same shape were shown in an n-alternative
forced choice task, one of which was illuminated from a different angle compared to the
N − 1 alternatives. Observers were tasked with finding the oddly illuminated object
from amongst the distractors. Besides the angle of illumination, these studies also
show further impact of texture, shape complexity and number of objects on observers’
ability to accurately detect oddly illuminated objects, highlighting the large tolerance for
inconsistencies and a serial visual search process underlying this behaviour.

2.7.1 Realism & Visual Attention

Attempts to understand the process of subjective realism assessment and the relative
importance of image features have been also made by Elhelw et al. (2008), who used an
eye-tracking paradigm to analyse how visual attention was deployed by observers assessing
realism of real and computer-generated bronchoscopy images. In order to achieve this, an
initial gaze-based study revealed multiple salient features through a single-stimulus realism
rating experiment. These salient features were then modified in a second experiment,

Figure 2.21: Example of statistical composite harmonisation. Original source and target image
shown in leftmost panel. The second panel illustrates a combination of the object from the source
image and the target scene. The subsequent panels show results of harmonisation using three
different algorithms. Image courtesy of (Xue et al., 2012)
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where a realistic CGI version of the original images was created, allowing for the properties
of the salient features to be modified. In turn, this enabled for each of the salient features
to be ranked with respect to its importance in generating a visually realistic perception
in observers. The authors found that specular reflections and geometric cues, such as
silhouettes and shadows around edges, were the two most important features. Moreover,
they illustrated the importance of visual attention in the subjective realism assessment
process. However, Ninassi et al. (2007) point out that despite the importance of visual
attention, its modelling in the process of image quality assessment is a challenging task.
Their attempts to improve objective IQA methods using attention models did not result
in significant improvements, even when using empirical ground truth data. The role of
visual attention in subjective quality and realism assessment is further discussed in the
context of Chapter 5.

2.8 Summary

This chapter has presented an overview of key concepts and literature pertaining to
measurement of subjective properties of images, particularly image quality and visual
realism, as well as discussing relevant background on human visual system, its modelling
and incorporation into image metrics. The concept of visual realism has also been defined
and posited as a special case of image quality. Based on a literature review, the concept
of photographic realism (or photorealism) has been reviewed and discussed in the context
of image compositing. A review of related work in realism perception, measurement
and modelling has also been presented, showing that many image-statistical approaches
perform well as proxies for realism prediction, but are difficult to generalise and extend to
new stimuli. Finally, related work discussing the impact of different visual features on the
perception of realism has been presented. The importance of modelling observer attention
has also been highlighted, showing that observer interest, experience, as well as the task
at hand may influence the realism rating process, and thus should be incorporated into
subjective models of visual realism.

Importantly, this chapter has illustrated that objective proxy metrics for subjective
properties such as quality or realism, while more efficient and easier to adopt in practical
scenarios, often under-perform in predicting human visual performance, compared to
subjective methods. Subjective models, on the other hand, are commonly impractical
to develop, particularly at scale, due to the requirement for controlled experimental
conditions and human observers. This indicates that techniques for conditional
generalisation of empirical perceptual models to novel image content could combine the
perceptual relevance and task specificity of subjective approaches with the ease of use and
efficiency of objective metrics. If the subjective assessment process is viewed as a function
mapping from input images to subjective opinions under a certain set of task constraints,
recent developments in learning-based methods could be leveraged to approximate the
function performed by human observers. Accordingly, the following chapter presents a
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review of recent advances in machine learning in this context.
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Chapter 3

Advances in Machine Learning for
Image Quality

3.1 Introduction

Chapter 2 illustrated that measurement of subjective perceptual properties of images such
as quality or visual realism is a complex problem. Despite the existence of a range of
approaches to image quality assessment, many are limited in terms of generalisability
to different stimuli, degradation types or observer groups. The viability of objective
metrics based on handcrafted features is largely reduced by the complexity of the HVS,
as well as the inherent variability of subjective judgements and natural visual stimuli.
Subjective measurement, on the other hand, is time-consuming and challenging to perform
at scale, requiring lengthy experimental sessions, large observer groups and extensive
result analysis. In recent years, developments in the field of machine learning have found
application in many areas of pattern recognition and image analysis. These approaches
offer a route to combining the accuracy of subjective approaches with the efficiency and
scalability of objective metrics.

This chapter provides relevant background on machine learning and presents a literature
review of recent advances in applying learning-based models to approximating perceptual
functions, modelling observer performance and learning feature distributions useful for
image quality and realism assessment.

3.2 Background on Machine Learning

3.2.1 Introduction

Machine learning (ML) is an interdisciplinary field of computer science, with strong links to
statistics, optimisation, game theory and information theory. The aim of ML is to design
computer programs that learn from experience, instead of relying on manually specified
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instructions. This is particularly useful for complex tasks, difficult to explicitly describe
in a rule-based manner, for example image classification or speech recognition. While
such tasks are intuitive and straightforward for humans to complete, they have posed a
significant problem for computers for many years. Rules for such systems are extremely
difficult to specify formally, as they rely on complex, hierarchical combinations of simpler
features and are heavily influenced by local context. For example, the intensities of pixels in
an image of a cat can take on a near-infinite number of configurations, while still appearing
like a cat to a human observer. Occlusion, illumination, or camera angle are just a few
properties, which can completely change the numerical representation of an image, without
affecting the semantic content at all. Regardless of viewing angle or illumination, a cat is
still a cat. As such, a formal definition of all pixel intensity configurations mapping to a
semantic concept of a cat is inefficient, if not impossible, to design by hand. Consequently,
the concept of solving such problems by learning from experience – has long motivated
ML researchers, particularly given the exponential increase of available data as a result of
the proliferation of the internet.

While it is beyond the scope of this work to provide an exhaustive historical overview
of machine learning, a key distinction between classical and contemporary approaches
must be made. Classical machine learning algorithms, such as logistic regression (Cox,
1958), linear regression (Stanton, 2001) or k-means clustering (Hans-Hermann, 2008),
rely on hand-designed features. If appropriate task-relevant features are designed and
extracted from training data, these algorithms perform very well, in addition to being
computationally inexpensive. However, when applied to complex tasks, such as speech
recognition or image classification, manually engineered features have proven ineffective.
Contemporary machine learning techniques, such as deep artificial neural networks
(DNNs), overcome this limitation by incorporating feature extraction into the learning
problem. This wider concept of first learning a task-relevant feature representation and
then learning the mapping from that representation to the desired output is referred to as
representation learning. At the time of writing, deep learning methods are achieving
state-of-the-art results in a range of machine learning problems, through hierarchical
representation learning, which expresses complex features as a combination of simpler
features. This section summarises the key concepts behind machine learning, focusing
on deep learning in particular, due to its successful applications in a range of pattern
recognition problems.

3.2.2 The General Learning Problem

Formally, ML algorithms focus on solving what is defined by Mitchell et al. (1997) as the
general learning problem:

“A computer program is said to learn from experience E with respect to some
class of tasks T and performance measure P, if its performance at tasks in T,
as measured by P, improves with experience E.”
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— Tom Mitchell, Machine Learning, p. 2

The task T describes the function to be performed by the learning algorithm. It specifies
how a collection of features, representing a training example, is processed. Features
are numerically expressed properties of an object or event, e.g. the intensities of pixels
in an image, daily market prices of a stock, or physiological measurements. A training
example is thus expressed as a vector x ∈ Rn, where each element xi represents a feature.
A collection of training examples is referred to as a dataset X ∈

{
x(1), . . . ,x(n)}. In

supervised learning problems, a dataset consisting of target values Y ∈
{
y(1), . . .y(n)}

is also specified. Each example x(i) will have a corresponding ground truth value y(i).
The dataset thus constitutes the experience E, required for the ML model to improve
performance on task T . However, in order to quantify the performance, a performance
measure P must be used. This measure is commonly specific to the task and measures
the degree of departure from the correct answer or desired outcome.

Various tasks can be addressed with ML algorithms, a few common examples are presented
by Bengio, Goodfellow and Courville (2017):

• classification

• classification with missing inputs

• regression

• transcription

• machine translation

• structured output

• anomaly detection

• synthesis and sampling

• imputation of missing values

• denoising

• density / probability mass function
estimation

A simple example of a classification task applied to image data could be identifying whether
a given photograph contains a cat. Such a task is defined by the user and must be
appropriately reflected by the training experience E. An example could be a dataset of
images representing input features, and associated binary ground truth labels describing
feline presence in each photograph. In order to measure the accuracy of this classifier,
the proportion of correctly classified photographs could be used as a performance metric
P . Thus, whichever ML algorithm one chooses to apply to this problem can only be
considered effective if the performance metric P improves as a function of experience E.
In the context of the cat classifier, this means that as more examples are presented, the
proportion of correctly classified images increases.
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3.2.3 Maximum Likelihood Estimation

Many ML techniques rely on various parametric families of probability distributions. In
order for ML models to perform well in a given task, the parameter values θ of these
distributions must be appropriately set. A common principle used for this purpose is
maximum likelihood estimation (MLE). MLE finds the set of parameters which maximise
the likelihood that the observed data was produced by the process described by the model.
Accordingly, following the formulation of Bengio, Goodfellow and Courville (2017), the
maximum likelihood estimator for θ is defined as

θML = arg max
θ

pmodel(X;θ)

= arg max
θ

m∏
i=1

pmodel(x(i);θ)
(3.1)

To avoid taking a product over many values, which could lead to numerical underflow,
Equation 3.6 can be also formulated in terms of a sum of logarithms, without affecting
the arg max value

θML = arg max
m∑
i=1

log pmodel(x(i);θ) (3.2)

due to the above, this can be expressed as an expectation with respect to the empirical
distribution p̂data described by the training data

θML = arg maxEx∼p̂data log pmodel(x;θ) (3.3)

.

MLE can also be described in the context of minimising the dissimilarity between the
model distribution pmodel and the empirical distribution p̂data, measured by the Kullback-
Leibler divergence:

DKL(p̂data | pmodel) = Ex∼p̂data [log p̂data(x)− log pmodel(x)] (3.4)

.

As the left term of the above equation is a function of only the training data, when training
the model, only the right term requires minimisation:

− Ex∼p̂data [log pmodel(x)] (3.5)
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This is equivalent to the likelihood term being maximised in equation 3.2, showing that
maximising the likelihood corresponds to minimising the negative log likelihood, or KL
divergence, between the model and training data distributions. This, in turn, corresponds
to maximising the cross-entropy between these distributions.

As the number of training examples nears infinity, the maximum likelihood estimates of
parameters approach their true value, provided that the following conditions are met:

• pdata must lie within the model family pmodel(·;θ)

• pdata must correspond to a single value of θ

A detailed overview of MLE in the context of machine learning is given by Bengio,
Goodfellow and Courville (2017).

3.2.4 Types of learning algorithms

No single best ML algorithm exists and, depending on task, available data and
computational resources, many algorithms are applicable. ML algorithms are commonly
categorised based on presence and type of supervisory signal:

• supervised learning

• unsupervised learning

Supervised Learning

Cat classification, as described in Section 3.2.2, is an example of a supervised learning
problem, since examples of both the input image and desired output are provided to the
model at training time. As such, a supervised learning problem aims to approximate
the function g : X 7→ Y mapping input images X to labels Y . This is commonly
accomplished by estimating a conditional probability distribution P (y | x). Maximum
likelihood estimation (MLE) is used to find the parameter vector θ which maximises the
likelihood of observing the training labels Y given images X and a parametric family of
distributions P (Y | X; θ). Accordingly, the conditional maximum likelihood estimator,
given training data and labels is:

θML = arg max
θ

P (Y |X;θ) (3.6)

If the training examples are assumed to be independent and identically distributed (i.i.d)
random variables, then Equation 3.6 can be decomposed into:

θML = arg max
θ

m∑
i=1

logP (y(i) | x(i);θ) (3.7)
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This illustrates the intuition behind supervised ML techniques: given some training data
consisting of m examples X = {x(1), . . . , x(m)} and corresponding labels, and a parametric
family of distributions (the model), the process of training consists of finding a set of
parameters θ, which maximise the log likelihood of the labels given the input data.

Unsupervised Learning

Unsupervised learning algorithms do not require labelled data in order to learn. Instead,
they aim to identify underlying patters in the training data. If supervised learning can
be viewed as approximating a conditional probability distribution, unsupervised learning
aims to approximate an a priori distribution p(x) – the data-generating distribution. For
example, in dimensionality reduction, the goal is to find a compact representation of the
training data, which maximises the preserved information, while reducing the number of
features required to represent it. One method of performing dimensionality reduction is
by using Principal Component Analysis (PCA), which can be interpreted in the context
of MLE. Given a set of n-dimensional vectors X and the desired dimensionality m the
objective is to find an m×n orthogonal projection matrix A, which minimises the squared
reconstruction error, defined as:

errorreconstruction = arg min
A

∥∥∥X −A−1AX
∥∥∥2

(3.8)

Dimensionality reduction can also be seen as a subset of representation learning, a task
often performed using unsupervised methods. Representation learning aims to learn and
extract task-relevant features, while also commonly reducing the dimensionality of the
data. Autoencoders are a popular tool for representation learning. They consist of two
key elements - an encoder and decoder. The encoder extracts features from the input
data, while the decoder tries to reconstruct the input data from these features. Since
the task only requires unlabelled input data, which it tries to reconstruct, no labelling
is required. In a sense, the input data is simultaneously used as the ground truth labels
and the autoencoder learns by minimising some reconstruction error between the input
and output. Once the error is sufficiently low, the encoder can then be used to extract
task-relevant features from input and perform further tasks using these features.

3.2.5 Gradient-based Optimisation

Many ML algorithms discussed in this work rely on the process of optimisation, which
is commonly used for computing maximum likelihood estimates of model parameters.
Optimisation aims to minimise or maximise the value of some function f(x) by making
changes to x. In the context of optimisation, this function is often referred to as
the objective function or the criterion. In scenarios where this function is specifically
minimised, such as DNNs, it can be referred to as the cost function, loss function or error
function. In practice, optimisation is commonly carried out using gradient descent
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(Cauchy, 1847). For a real-valued function of a real variable y = f(x), gradient descent
makes small changes to x in order to minimise y. It accomplishes this by calculating the
derivative of f(x) with respect to x, which indicates the slope of f(x) at point x. Using
the sign of the resulting derivative, y can be incrementally minimised by changing x in
the direction opposite to the sign of the derivative:

xi := xi + ∆xi (3.9)

where

∆xi = −αdf(x)
dxi

(3.10)

Here, α is the size of the step taken, often referred to as the learning rate in machine
learning problems.

This concept can be easily extended to functions with multiple inputs by using partial
derivatives. If x is a length n vector, then the gradient is defined as:

∇xf(x) =


∂f(x)
∂x1

,
∂f(x)
∂x2

,
...

∂f(x)
∂xn

 (3.11)

For functions which output vectors, as well as taking vectors as input, the concept of the
gradient can be extended to the Jacobian matrix. For a function f : Rm 7→ Rn, the
Jacobian matrix J ∈ Rn×m of function f is defined as:

Ji,j = ∂f(x)i
∂xj

(3.12)

3.2.6 Stochastic Gradient Descent

Many ML problems require large training datasets in order to achieve good generalisation.
For some task domains, such as image classification, computing a Jacobian matrix and
performing a single gradient descent step a large dataset may become computationally
expensive. Stochastic gradient descent (SGD) is an adaptation of gradient descent which
addresses this problem. SGD simply computes the gradient for small random samples
(commonly between 2 and 512) of the training dataset, referred to as minibatches. This
gradient estimate is then used to perform a step of gradient descent, and the process is
repeated for another minibatch. This can be illustrated as follows. If J(θ) is the negative
conditional log-likelihood of the training dataset:
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J(θ) = Ex,y∼p̂dataL(x, y,θ) = 1
m

m∑
i=1

L(x(i), y(i),θ) (3.13)

where L is the loss term

L(x, y,θ) = − log p(y | x;θ) (3.14)

then the gradient of the cost function with respect to the model parameters and training
dataset of size m is

∇θJ(θ) = 1
m

m∑
i=1
∇θL(x(i), y(i),θ) (3.15)

.

Accordingly, the estimate of the gradient calculated on a minibatch B = {x(1), . . . ,x(m′)}
containing m′ training examples corresponds to

g = 1
m′
∇θ

m′∑
i=1

L(x(i), y(i),θ) (3.16)

This estimate is then used to update the parameters

θ ← θ − εg (3.17)

where ε is the learning rate parameter controlling the size of the step taken along the
negative gradient.

SGD is among the most popular optimisation algorithms used in ML and particularly
within deep learning, where many variants and extensions to SGD have been proposed.
See Ruder (2016) for a detailed overview. Examples of these include SGD with momentum
(Qian, 1999), which performs gradient updates based on an average of gradients at
previous time-steps; Adam - a popular extension of SGD proposed by Kingma and Ba
(2014), which incorporates per-parameter learning rates. The implementation of SGD in
deep feedforward neural networks (discussed in Section 3.3) relies on the backpropagation
algorithm (Rumelhart, Hinton and Williams, 1986).

3.2.7 Generalisation

In order for machine learning models to be useful, they must generalise well. Generalisation
refers to the ability of the model to perform well on data which it has not been trained
on. A common method of measuring model generalisation involves comparing the training

61



and test error. These are a result of the performance metric P evaluated on the training
set and a hold-out test dataset, respectively. The test set contains examples from the
same task domain, but not used during training. Bengio, Goodfellow and Courville (2017)
suggest that model performance is determined by two key factors:

• training error

• difference between training and test error

A low training error indicates successful training, while a low test error suggests good
generalisation. The scenario where a model cannot achieve sufficiently low training
error is referred to as underfitting. Conversely, overfitting occurs when training error
is low, but test error remains relatively high. Underfitting and overfitting are common
practical challenges encountered in machine learning and are commonly a function of
model complexity (inf. model capacity) and, in some cases, training dataset size and
distribution. Model capacity refers to the ability of a given machine learning algorithm
to approximate a large range of functions. The range of available functions, and thus
capacity, can be changed by controlling the model’s hypothesis space (Bengio, Goodfellow
and Courville, 2017). E.g. a linear regression model’s hypothesis space includes all linear
functions y = ax+b. In practice, how model capacity can be adjusted depends on the type
of ML algorithm used. E.g. in deep neural networks, model complexity can be increased
by making the network “deeper” through adding layers of neurons, for example.

3.2.8 No Free Lunch Theorem & Regularisation

In his seminal work, Wolpert and Macready (1997) show that no single ML algorithm
can outperform others, when averaged across all data-generating distributions and tasks.
Dubbed as the no free lunch theorem, this finding indicates that for particular task-related
distributions, appropriate ML algorithms must be selected. Thus, as Bengio, Goodfellow
and Courville (2017) suggest, design of effective ML models relies on understanding the
task-relevant data-generating distributions and selecting an ML algorithm that performs
well on data sampled from such distributions. Moreover, task-specific design allows for
incorporation of constraints, or prior knowledge, which in turn, can allow for performance
gains. Effectively, such constraints can be used to limit the hypothesis space and impose
a preference for certain solutions, compared to others. The process of introducing such
preferences is referred to as regularisation and is key to the ability of many ML algorithms
to generalise well to unseen data, despite learning from only a subset of the true data-
generating distribution.

Regularisation has been shown to reduce overfitting and improve generalisation of ML
models Krogh and Hertz (1992). A technique known as weight decay is a simple,
yet effective regularisation method, which expresses preference for lower-valued model
parameters. Weight decay is implemented using a regulariser Ω - a penalty, consisting
of the L1 or L2 norm of all the model’s weights (parameters).
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Ω(w) = w>w (3.18)

This regulariser is added to the training loss, for example MSE between predictions and
ground truth labels, which forces the learned weights to take on smaller values. The
strength of this regularisation can be controlled by a scalar λ:

J(w) = MSEtrain + λΩ(w) (3.19)

Similarly to the choice of ML algorithms for a given problem, no single best regularisation
method exists and many implicit and explicit approaches to regularisation have been
proposed in the literature. Some of these are discussed later, in the context of specific ML
problems addressed in this thesis.

3.2.9 Hyperparameters

In addition to the parameters of a machine learning model estimated during the training
process (the weights), a set of parameters controlling the dynamics of the learning
algorithm itself must be specified. These are referred to as hyperparameters and are
specific to the particular model used for a given task. The λ parameter controlling the
strength of weight decay described above is an example of a hyperparameter. A common
reason for why hyperparameters are not inferred during the training process is that this
leads to overfitting. For example, allowing λ to be determined by the training process
in the regularisation example above would result in λ = 0.0, since this is minimises the
training error. Any other parameter influencing model capacity will have the same effect,
as increasing complexity is the “easiest” way for the model to lower its training error.

Several approaches have been proposed to find optimal hyperparameter values. These
are commonly based on a process consisting of sampling a set of hyperparameter
values, training and evaluating a model and repeating the process, until the training
or generalisation error is minimised. The sampling strategy adopted can be based on a
random or grid-based search Bergstra and Bengio (2012), evolutionary algorithms Young
et al. (2015) or Bayesian methods Klein et al. (2016), to name a few.

3.2.10 The essence of a machine learning algorithm

Most machine learning algorithms can be described in the context of four key components:
a training dataset X, a cost function J(θ), an optimisation procedure (e.g. SGD) and a
parametric model family pmodel. Thus, a large range of possible ML algorithms can be
designed by replacing any of these components, depending on the requirements of a given
task. As described in Section 3.2.3, for pmodel to accurately approximate p̂data, p̂data must
lie in the model family pmodel(·;θ). Thus, the model’s ability to approximate a wide
range of complex functions is fundamental to solving non-trivial ML problems. In recent
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Figure 3.1: Conceptual illustration of a neural network, consisting of an input layer, two hidden
layers and an output layer. Each node represents a neuron. The arrows represent forward
connections between neurons.

years, Feedforward neural networks (or multilayer perceptrons) have become the
de-facto standard in practical applications of machine learning. The term deep learning
refers to using such deep, hierarchical models in combination with optimisation methods,
such as SGD, discussed earlier in this chapter, to solve difficult problem, such as object
classification, speech recognition or image synthesis. Deep learning is a vast and rapidly-
developing research domain, while key concepts are discussed below, the interested reader
is referred to Bengio, Goodfellow and Courville (2017) for an in-depth review.

3.3 Deep Feedforward Networks

Deep feedforward neural networks, commonly referred to as deep artificial neural networks
(DNNs), are general-purpose function approximators. A trained DNN approximates
some function f∗, for example, for a classification task, the network defines a mapping
y = f(x;θ) and uses SGD in order to find the set of parameters θ resulting in the
best approximation, as measured by some cost function J(θ). A DNN can be seen as a
composition of multiple functions, e.g. f(x) = f (3)(f (2)(f (1)(x))). Each of these functions
is referred to as a layer of the neural network, and the depth of a DNN is given by the
number of these consecutively chained layers. The final layer of a DNN is referred to as
the output layer. During training, the cost function is computed using values output by
this layer. All other layers in the network, bar the input layer, are referred to as hidden
layers, as their desired outputs are not explicitly represented in the training data.

Each layer in the network consists of multiple units, also known as neurons. Each neuron
computes a function of its inputs, commonly a vector of all outputs of the previous layer,
and outputs a single activation value.

3.3.1 The Neuron

A unit, or artificial neuron, builds on the concept of a linear function of vector-valued
input, by introducing a nonlinearity. In the DNN context, a neuron consists of a set of
inputs x ∈ Rm, corresponding weights w ∈ Rm and a nonlinear function h applied to the
sum of the inputs x scaled by weights w:
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Figure 3.2: Illustration of an artificial neuron, consisting of inputs x0 through xm, corresponding
weights w0 through wm, summing Σ and activation function.

a = h(z) (3.20)

where

z =
m∑
i=0

wixi (3.21)

Here, a represents the real-valued activation of the neuron. Commonly, x0 is assigned value
+1 and represents the bias term. This can also be represented as an explicit additive term.

The set of weights w of each neuron constitutes the parameters θ learned by the network
during training. While many neural network implementations extend or adapt this
definition of the neuron, the guiding principles remain the same: find the parameter
values θ that minimise cost function J(θ)

3.3.2 Activation Function

The activation function h is key to the success of DNNs in many practical applications.
Without a nonlinear activation function, the output of a single neuron would remain a
linear function of its inputs. A network, constructed of such neurons, would thus also
compute a linear function of its inputs. Activation functions introduce nonlinearity into
the output of neurons, thus allowing a neural network to learn a nonlinear function of its
inputs. This also allows for chaining of multiple layers of the network, and thus expressing
complex features as a function of simpler features.

The practical challenges associated with training DNNs have driven research into different
activation functions. Aspects such as efficiency, continuous differentiability, range and
smoothness are all desired properties.
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Rectified Linear Units

A standard activation function used in a range of state-of-the-art DNNs is the rectified
linear unit (ReLU) (Nair and Hinton, 2010):

h(z) = max{0, z} (3.22)

where z is the sum of inputs x weighted by w, as in Equation 3.21. For z > 0 the
function outputs the input value, otherwise it outputs 0. Its desirable properties include
computational efficiency and constant gradient of 1 for z > 0, however it suffers from
the dying ReLU problem, due to the fact that the gradient is 0 when z = 0. In those
scenarios, gradient descent will no longer affect the associated weights, thus removing the
contribution of that neuron to the task.

ELU, Leaky ReLU, SeLU

Many extensions of the ReLU function attempt to address the dying ReLU issue, these
include the exponential linear unit (ELU) (Clevert, Unterthiner and Hochreiter, 2015):

h(z) =

z if z > 0

α(ez − 1) otherwise
(3.23)

where α is a hyperparameter to be tuned. The ELU unit behaves as an identity function
for z > 0 and smoothly approaches −α for z ≤ 0.

The leaky ReLU (Maas, Hannun and Ng, 2013) is another approach to addressing the
dying ReLU problem. Instead of outputting 0 when z ≤ 0, leaky ReLU retains a small
slope, controlled by parameter α:

h(z) =

z if z > 0

αz otherwise
(3.24)

where α is usually set to a small value, e.g. 0.01.

Another example of rectifier-based activation functions is the scaled exponential linear unit
(SeLU) (Klambauer et al., 2017):

h(z) = λ

z if z > 0

αez − α otherwise
(3.25)
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Logistic Sigmoid & Hyperbolic Tangent

The logistic sigmoid

σ(z) = 1
1 + exp(−z) (3.26)

and hyperbolic tangent

tanh(z) = 2σ(2z) (3.27)

are examples of activation functions whose output value ranges are bounded. This is useful
for some tasks where the output values must be within some specified range, however due
to the property of saturation (the output of a function being close to 0 for small values
and close to 1 for high values), models with these activation functions in hidden layers
are difficult to train using gradient-based methods. The logistic sigmoid is, however, often
used as the output layer of networks trained to perform binary classification.

Softmax

The softmax activation function serves an important practical purpose of transforming
an input vector into a probability distribution. It is commonly used in the final layer of
a classification neural network, where the number of output neurons K corresponds to
the number of classes. Accordingly, the softmax activation converts the linear activation
zk of the kth neuron in the OUTPUT layer into a probability score corresponding to the
kth class. Accordingly, the softmax activations for all classes sum to 1.0. The softmax
function is defined as:

softmax(zk) = exp(zk)∑K
j=1 exp(zj)

(3.28)

where zk is the linear activation of the kth unit, as defined in Equation 3.21.

Linear

The linear activation function is equivalent to not specifying any activation function and
outputting z. Linear activation functions are commonly used in the final layer of neural
networks tasked with regression problems, which estimate the mean of a conditional
Gaussian distribution. In such scenarios, the desired output range may be unbounded.

3.3.3 Cost Functions

For a given ML task, the choice of cost function has a large impact on the results. This
is because the gradient of the cost function directly influences the changes to the model’s
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weights, as shown in Equations 3.13 - 3.17. In practice, cost functions are commonly
selected based on the task being performed by the network. In classification tasks, the
cost function commonly involves a cross-entropy between the target y and predicted ŷ
multinomial distributions:

CE(y, ŷ) = −
C∑
i

yi log(ŷi) (3.29)

In regression tasks, the cost function measures the mean squared error between ground
truth and predicted values (or vectors thereof):

MSE(y, ŷ) = 1
m

m∑
i

(yi − ŷi)2 (3.30)

, while in representation learning, the reconstruction loss commonly calculates the mean
absolute error between predictions and ground truth.

MAE(y, ŷ) = 1
m

m∑
i

|yi − ŷi| (3.31)

Many adaptations and extensions of these cost functions have been proposed based on
task type and the structure of inputs and outputs. These extensions commonly aim to
address issues such as class imbalance in the training dataset, or allow expressing preference
between precision and recall in classification tasks (Lin et al., 2017). Special cases of cost
functions will be discussed later, in the context of individual chapters.

3.3.4 The Universal Approximation Theorem

The practical success of DNNs is largely associated with their theoretical ability to
approximate any given function. The universal approximation theorem for neural networks
(Hornik et al., 1989) states:

“There is a single hidden layer feedforward network that approximates any
measurable function to any desired degree of accuracy on some compact set
K.”

While this does not guarantee that such function may be practically learnable using current
gradient-based learning algorithms, it shows that a sufficiently large neural network is
capable of representing any function.

3.3.5 Convolutional Neural Networks

Convolutional neural networks (CNNs)s are a special case adaptation of conventional
neural networks, as discussed in Section 3.3, applied to processing 2- or 3-dimensional data,
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such as images. From a perspective of implementation, CNNs simply replace conventional
matrix multiplication operations with convolution, in at least one layer:

S(i, j) = (I ∗K)(i, j) =
∑
m

∑
n

I(i−m, j − n)K(m,n) (3.32)

Where S(i,j) is the result of the convolution operation, also represented by ∗, I is the
input image and K is the convolution kernel. For the purposes of CNNs cross-correlation
is typically used instead of convolution, which in this context is equivalent, as it only
involves flipping the convolutional kernel:

S(i, j) = (I ∗K)(i, j) =
∑
m

∑
n

I(i+m, j + n)K(m,n) (3.33)

In practice, CNNs are well suited to the task of processing image data, due to the fact
that they exploit three key ideas, summarised by Bengio, Goodfellow and Courville (2017)
and discussed below.

Sparse Interactions

In conventional, densely-connected DNNs each input value interacts with each output value
of the network, in CNNs the use of the convolution operation results in the information at
the output being a function of a local neighbourhood of the input. In practice, this greatly
reduces the number of operations, speeding up training and evaluation of such networks.

Parameter Sharing

While in DNNs each individual input to a layer of the network is associated with a single
parameter, CNNs share parameters across inputs. For example, a given layer of a CNN
may consist of D k × k filters with learnable weights, allowing it to learn D different
k × k convolutional kernels, outputting D feature maps, each resulting from convolving
the input image with one of the D kernels. Here, the number of parameters per layer is a
function of kernel size and count, but not a function of input dimensionality, due to the
sharing of each kernel across the entire input array.

Equivariant Representations

CNNs generate translation-equivariant representations. This means that a translation
applied to the input image pixels will result in an equivalent translation of the
corresponding features in the resulting feature map. This is a useful property of
convolutions when applied to images, as it allows for parameter sharing and localisation
of features.
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3.3.6 Properties of Convolutional Layers

Several properties of convolution operations, as applied in CNNs, can be adjusted in order
to influence the behaviour of the operation. These include:

• kernel size: the dimensions of the convolutional kernel, e.g. 3× 3

• stride: the size of the step taken by the kernel

• padding: the amount of zero-padding added to the input image

• number of filters (kernels): controls the number of kernels learned by a
convolutional layer and thus the number of different features extracted.

These properties constitute some hyperparameters of CNNs are key in controlling their
model capacity, scale of features at different layers and other task-dependant properties.
The settings of these hyperparameters are often evaluated experimentally, with respect to
task, model architecture and dataset, see Bergstra and Bengio (2012) for an overview.

3.3.7 Other Neural Network Layers

Various specialised layers and aspects of network architectures have been proposed in order
to improve performance, generalisation and training dynamics of DNNs.

Batch Normalisation

Batch normalisation (BN) (Ioffe and Szegedy, 2015) is a process aiming to standardise
the mean and standard deviation of a layer’s output activations (and consequently the
following layer’s input activations) for a given minibatch. This speeds up training through
reducing the change in the distribution of inputs to successive layers, as the weights of the
network are adjusted over time. This phenomenon is known as internal covariate shift.
Despite some disagreement regarding the theoretical grounds for the effectiveness of BN
(Kohler et al., 2018), experimental evidence has made it a standard component of modern
neural networks.

Dropout and Spatial Dropout

Dropout (Srivastava et al., 2014) is an efficient regularisation method commonly used in
DNNs. Dropout works by randomly ignoring the contributions of certain neurons and
their associated connections to the network’s output during training. This approximates
the process of training many parallel subnetworks to perform the same task and pooling
their outputs, reducing strong correlations between activations of a network. Another
interpretation of dropout is that it adds noise to the training process, by effectively ignoring
a certain proportion of activations randomly in each iteration. This forces different subsets
of the network to perform well on the training task, and thus acts as a regulariser. In
CNNs, due to the convolution operation, dropping individual pixels from feature maps
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has little effect on the output, rendering dropout ineffective. To address this, Tompson
et al. (2015) proposed a spatial adaptation of dropout. Spatial dropout works by dropping
entire feature maps, instead of dropping individual neurons (which correspond to pixels
in the feature maps).

3.4 Architectures & Applications of CNNs

CNNs are among the most popular classes of neural networks. They have been successfully
applied to many pattern recognition problems and have contributed to a revolution in
modern computer vision, allowing significant progress in many long-standing problems. As
no standardised, formal approach to designing DNN architectures exists, many solutions
are available, and a complete review is beyond the scope of this thesis. This section
discusses key CNN-based approaches to solving a range of vision-related tasks, the
associated network architectures, cost functions and other contributions relevant to this
thesis. For the sake of organisation, the work discussed here is organised by task domain,
however it is important to note that due to the general-purpose nature of NN-based
approaches, these techniques are relevant in the context of the aim of this thesis.

3.4.1 Image Classification

The first broadly successful application of a CNN architecture to a large-scale visual
problem was carried out by Krizhevsky, Sutskever and Hinton (2012). They proposed
a 5-layer convolutional neural network (dubbed AlexNet), which achieved near-human
performance in image classification on the challenging ImageNet Large-Scale Visual
Recognition Challenge dataset consisting of 1000 object classes and 1.2 million training
images. This seminal work commenced the modern deep learning era in computer vision.
Consequently, DCNNs have been applied to a host of visual tasks where input images
are mapped to some output representation, label or image. The ILSVRC continued
to attract CNN-based solutions, seeing adaptations of AlexNet, such as Clarifai (Zeiler
and Fergus, 2014), or VGG16 (Simonyan and Zisserman, 2014) win the challenge in the
following years. In 2014, GoogLeNet (a.k.a. Inception V1), proposed by Szegedy et al.
(2015), took an entirely different approach by proposing inception modules which perform
parallel convolution at different scales and concatenate the result. In addition to this,
the authors improved the efficiency of various aspects of the network, allowing them to
drastically increase its depth to 22 layers. This was surpassed the following year by He
et al. (2016) who proposed networks based on residual blocks, which addressed many
practical problems associated with training very deep networks, such as the vanishing
gradient problem (Hochreiter, 1998) and the degradation problem. Despite continued
development of new architectures, these models have remained a key building block, with
many researchers adopting them as a starting point for transfer learning or modifying and
extending them to new tasks.

71



3.4.2 Object Detection

CNNs for object classification were soon adapted to object detection tasks, allowing for
detection and classification of multiple objects in a single image. An object detector returns
the class and location of each detected object instance. The location is commonly described
as a set of bounding box coordinates. Early contributions were made by Girshick et al.
(2014) and Girshick (2015) through applying a conventional CNN classifier to multiple pre-
specified regions of an input image. This was further extended by Ren et al. (2015), who
trained a specific region proposal network to replace pre-computed sets of regions. Redmon
et al. (2016) proposed a novel single-stage detector (SSD), which combined the region
proposal and object classification stages into an end-to-end network, capable of performing
in real-time. Multiple improvements of this model were later suggested (Redmon and
Farhadi, 2017, 2018). The SSD object detection framework has become fundamental in
real-world applications of computer vision, such as autonomous driving (Chen et al., 2016),
traffic monitoring (Lin and Sun, 2018), security (Akcay et al., 2018) or medicine (Sarikaya,
Corso and Guru, 2017). A detailed review on CNN-based object detection is given by Zhao
et al. (2019).

3.4.3 Semantic Segmentation

In the context of CNNs, the task of semantic segmentation is closely related to object
detection and classification. However, instead of outputting object classes and instance
bounding boxes, semantic segmentation produces a pixel-wise class map, assigning an
object class to every pixel of the image, thus performing segmentation in addition
to detection and classification. The problem of semantic segmentation fuelled the
development of fully convolutional networks (FCNs) (Long, Shelhamer and Darrell, 2015).
As opposed to conventional CNNs, which output a single class label, or bounding box
coordinates, these networks output images, in addition to taking them as input. Such
networks are well-suited to image-to-image translation problems and have been used in
areas such as image colourisation (Cheng, Yang and Sheng, 2015; Zhang, Isola and Efros,
2016), denoising (Xie, Xu and Chen, 2012), style transfer (Gatys, Ecker and Bethge, 2016)
and super-resolution (Johnson, Alahi and Fei-Fei, 2016). An attractive property of many
of these applications stems from the fact that labelled training data can be generated
on the fly. For example, in the context of denoising, the noisy input images can be
generated on-the-fly, by applying various amounts of noise to clean images. The Unet is a
popular example of a general-purpose FCN architecture developed to address semantic
segmentation (Ronneberger, Fischer and Brox, 2015) and applied to a wide range of
other image-to-image problems, notably as the generator in Pix2Pix, a popular generative
adversarial network architecture for image synthesis and translation (Isola et al., 2017).
The Unet is based on an encoder-decoder architecture, crucially adding skip connections
which preserve low-level features and help with gradient backpropagation (Drozdzal et al.,
2016).
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3.4.4 Image Synthesis

The development of FCNs, particularly Unet-style image generation networks, coupled
with the framework of a Generative Adversarial Network (GAN) (Goodfellow et al.,
2014) and their conditional counterpart (Mirza and Osindero, 2014) contributed to major
advances in image synthesis. The aim of a GAN is to generate new data with the same
properties as the training data. Thus, a GAN implicitly approximates the data-generating
distribution through training two subnetworks, the generator (G) and discriminator (D)
in an adversarial manner. G aims to generate samples that fool D, while D tries to
discriminate between real samples from generated ones. Many state-of-the-art image
synthesis models have adopted and further developed the GAN framework for purposes
such as image super-resolution (Wang et al., 2018b), image translation (Zhu et al., 2017),
inverse rendering (Thies et al., 2016a) and many other non-vision-based applications.

3.4.5 Perceptually-based Tasks

Crucially to the theme of this thesis, CNNs have also been used extensively for explicit
modelling of aspects of human perception. Such approaches are often based on training
directly on subjective data, commonly collected in task-specific experiments with human
observers. As illustrated throughout this chapter, a key benefit of DL and gradient-
based optimisation techniques is that they can be adapted to new tasks with relative
ease, provided sufficient training data are available. In practice, this may also involve
adaptations to the architecture of the CNN to account for the task-specific properties, such
as dimensionality of the inputs and outputs, model capacity or regularisation strategies
employed.

Saliency Prediction

Saliency prediction, the goal of which is to accurately predict the probability distribution
of visual attention in an image, is one example of such task. This task has recently been
approached through direct learning of the perceptual function mapping input images to
ground truth saliency maps based on empirical fixation distributions (Zhao et al., 2015;
Pan et al., 2016). See Figure 3.3 for an example. Other approaches have also proposed
architectural improvements, such as extraction of features at multiple scales (Cornia et al.,
2016), or extensions for predicting saliency in video sequences (Jiang et al., 2018).

Perceptual Similarity

Another example of using empirical subjective data in order to generalise human
performance to new stimuli has been put forward by Zhang et al. (2018b), who trained
a perceptual similarity metric based on subjective similarity scores, collected for a large
dataset of image patches using a two-alternative forced choice (2AFC) procedure. A CNN
was then trained to map pairs of input patches to a single-value perceptual similarity
scores. The authors found the proposed perceptual metrics to outperform classical metrics,
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Figure 3.3: Examples of empirical saliency maps compared to saliency maps generated by a shallow
and deep CNN. Image courtesy of Pan et al. (2016)

based on analysis on benchmark datasets. This approach has recently been applied in the
context of audio similarity (Manocha et al., 2020), achieving state-of-the-art results.

Image Quality Assessment

Applications of CNN-based models can also be found in image quality assessment. Most
of these approaches build on the premise of learning mappings between images and
corresponding subjective quality scores (Gu et al., 2014). Bosse et al. (2017) evaluate
such an approach in the context of both NR and FR IQA, Hou et al. (2014) replace
numeric scores with linguistic descriptors during data collection and training, while Kim
and Lee (2017) propose a model that also learns visual error sensitivity maps from FR
image quality datasets. Bianco et al. (2018) report on a broad study of architectural
choices for DL-based NR IQA, concluding that patch sampling and average pooling are
both reliable design choices for this application. Based on the insight that group IQA scores
tend to be distributed, rather than concentrated, Talebi and Milanfar (2018) proposed a
training regime based on representing subjective scores as distributions, rather integers.
As public dataset sizes increase (Hosu et al., 2020), this task is likely to continue receiving
attention in the research community. For an extensive survey of recent perceptually-
based IQA solutions, see Zhai and Min (2020). Overall, the success of DL-based IQA
solutions illustrates that under appropriately controlled conditions, deep learning methods
are effective at approximating and generalising human performance in perceptual tasks.
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Image Transformation & Harmonisation

CNNs have been extensively studied in the context of realistic image synthesis and
transformation. In addition to synthesis of new image content, described earlier in this
section, these techniques have been leveraged for conditional image transformation and
synthesis. Similarly to the statistical approaches to composite harmonisation described
in Section 2.7, the goal of these techniques is to transform an input image, often a
composite, or CGI, for practical or aesthetic purposes. Applications of such techniques
span a broader range of tasks, such as domain adaptation (Murez et al., 2018) or style
transfer (Gatys, Ecker and Bethge, 2016). Thanks to the general nature of image-to-image
DL architectures, this allows for learning of a wide range of functions mapping between
images without major modifications to the network architecture (Goodfellow et al., 2014).

75



Figure 3.4: Architecture of the original DIH model. Image courtesy of Tsai et al. (2017)
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Figure 3.5: Illustration of the spatial-separated convolution module attached to a U-Net style,
encoder-decoder architecture. Image courtesy of Cun and Pun (2020)

Image harmonisation has received much attention in this context. Tsai et al. (2017)
propose an approach to harmonising an image composite, given the original, unharmonised
image input and a binary mask indicating the foreground object. They also leverage
features learned on a semantic segmentation task in order to improve spatial allocation
of transformations, in essence learning a mapping between input and target composite
images, conditioned explicitly on object masks and implicitly on scene semantics. The
network is trained by minimising either L1 or L2 distance between the output image and
ground truth. Figure 3.4 illustrates the architecture of the CNN used by the authors,
which consists of a shared encoder and two separate decoders, one used for harmonisation
of the input composite, the other for scene segmentation. The intermediate feature maps
from this scene segmentation branch are concatenated with corresponding features in the
harmonisation decoder branch. However, this method is difficult to extend to novel data,
since it relies on input composite masks, as well as scene segmentation ground truth
data to be available at training time, in addition to the unharmonised and harmonised
images. The input object mask is also required at inference time, which makes this method
impractical for legacy content (such as films or photographs, for which the original source
masks may not be available), since it requires manual generation of a mask.

This general approach was extended by Cun and Pun (2020), who proposed a spatial-
separated convolution module, designed to extract more relevant harmonisation features,
by relying on the composited region for feature extraction. Using the input binary mask,
intermediate feature maps are re-weighted according to the input mask and a trainable
attention module (see Fig. 3.5). This architectural design allows for the network to treat
the regions requiring harmonisation differently from the background, for example, to only
manipulate the pixels in the target region, while influencing their appearance based on
the properties of the background region. Similarly to other harmonisation networks of
this design, this technique also requires input masks to be available, both at training and
inference time.

The spatial-separated module was later adopted by Cong et al. (2020) who proposed
a new standardised, extensive harmonisation dataset (iHarmony), and architectural
improvements to the base model, including partial convolutions and an adversarial training
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Figure 3.6: An illustration of the architecture of DoveNet, including the generator with attention
modules from Cun and Pun (2020) and two discriminator networks used in the adversarial training
procedure.

regime (see Fig. 3.6 for an illustration of this architecture). Here, partial convolutions
allow for one of the discriminator networks to encode separate features for the background
and foreground, allowing for a direct comparison of the appearance of the foreground and
background, respectively, in the domain verification discriminator. In addition to this
domain verification discriminator, a standard global discriminator is also used, and the
losses are averaged. This method, despite its impressive results, is challenging to train,
both due to the number of parameters in the network, and the volatile nature of adversarial
training.

An alternative approach was proposed by Sofiiuk, Popenova and Konushin (2020), who
leverage neural networks pre-trained on semantic segmentation tasks in order to extract
better appearance descriptors for local regions. The proposed approach does not leverage
any characteristics of human perception, relying on a purely data-driven approach to
harmonisation. A different approach is proposed by Chen and Kae (2019), who rely on
a GAN-based architecture to perform the entire process of compositing, including the
positioning and harmonisation of the foreground object in the target scene. While the
approach achieves impressive results, it requires a complex adversarial training procedure
and a custom synthetic CGI dataset, making this method challenging to build on in
practical terms.

Visual Realism Assessment

As mentioned in Chapter 2, despite the broad adoption of ML techniques in image
transformation and synthesis, few examples of using ML techniques in the context of visual
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realism prediction exist. Zhu et al. (2015) design a CNN to perform binary classification
of realism in images. This is accomplished by automatic generation of image composites,
thus removing the requirement for human-annotated data, however only provides global
predictions of realism, making it unsuitable for local prediction of realism. Similarly, Fan
et al. (2018) use a CNN for binary prediction of realism based on an extensive subjective
study evaluating impact of latent factors on perception of visual realism. The authors also
propose an explainable model based on a support vector machine (Noble, 2006). While
both techniques outperform prior approaches, they require extensive subjective modelling
and some manual feature extraction. Furthermore, the approach also considers global
image realism only, making it more suitable for CG vs photograph classification, but not
for evaluation of local image composite quality. Both these approaches rely on a CNN to
learn relevant features and classify the input. A different approach is taken by Yao et al.
(2018), who instead rely on sensor pattern noise to distinguish CG from real images. The
authors incorporate high-pass filtering into the network design, which performs well for
global classification of manipulated vs authentic photographs. Furthermore, the high-pass
filters require tuning for different datasets, making this method difficult to generalise to
new domains.

3.5 Limitations of Existing Approaches

While many deep learning approaches to composite image harmonisation have been
proposed, as illustrated in this chapter, they all suffer from common shortcomings.
Firstly, as previously discussed, they commonly require additional input and/or output
training data to be available during training and/or inference time. This makes it both
challenging to adapt such methods to new datasets, but also difficult to apply to legacy
image composites (e.g. ones for which masks are not readily available). Secondly, given
that few composite datasets are publicly available, and their sizes are limited, training
these methods on small novel datasets may yield results of lower quality, compared to
the results presented on research datasets, making it increasingly difficult to adopt these
techniques in practical settings. Thirdly, existing methods do not consider properties of
human perception and adopt an exclusively data-driven approach, potentially reducing
the resulting subjective quality, or realism. Furthermore, manually-generated object
masks, while commonly available for new composites, do serve as a form of hard-coded
prior knowledge, effectively side-stepping a crucial part of the human process of image
compositing - assessing the type and magnitude of the mismatch, before the composite is
harmonised. Explicitly incorporating detection of composite regions requiring correction
in the harmonisation process would allow for closer replication of the process that humans
undertake when performing image compositing. Additionally, this would also allow for
tuning of the detection process based on human perceptual sensitivity, by effectively
decoupling the detection from the correction of composite artefacts.
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3.6 Summary

This chapter has reviewed the background and relevant literature in machine learning,
including learning-based approximation of perceptual functions, such as those commonly
modelled in image quality assessment. Due to their universality and broad range of
practical applications, deep learning techniques, particularly ones based on CNNs, have
been identified as a plausible approach to modelling complex functions, such as the
perceptual functions mapping a visual stimulus to a subjective score. Despite the extensive
body of work relying on CNNs to learn mappings between input images and subjective
opinion scores, few attempts have been made towards directly approximating the function
performed by observers under a visual realism assessment task and leveraging that function
in downstream transformation tasks, such as harmonisation. To date, existing approaches
to DL-based prediction of subjective image properties have been shown to rely on direct
approximation of the realism discrimination function directly from image data, often
performing the task globally, thus providing a single, image-wise assessment of realism,
unsuitable for automatic improvement of composite realism. On the other hand, state-
of-the-art harmonisation models achieve impressive results, commonly relying on pre-
trained features from proxy tasks, such as semantic segmentation. This highlights the
importance of the feature extraction stage for the success of both realism assessment
and its improvement, and suggests that learning general-purpose feature representations
based on the types of distortions present in image composites may be an effective route
towards developing improved harmonisation and realism assessment models. The following
chapters draw on these findings to design perceptually-based models of visual realism as
a function of distortion visibility and generalise them using learning-based approaches.
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Chapter 4

Modelling Perceptual Realism in
Image Composites

This work was published in:
Dolhasz, A., Williams, I. and Frutos-Pascual, M., 2016. Measuring Observer Response
to Object-Scene Disparity in Composites. 2016 IEEE International Symposium on Mixed
and Augmented Reality (ISMAR-Adjunct). IEEE, pp.13–18

4.1 Introduction

The previous chapters have introduced the problems of image quality and visual realism,
methods for their measurement and modelling, as well as various approaches to their
prediction. Such subjective measures have been shown to be influenced by a range of
visual features of the image stimuli, for example, resolution, sharpness, colour rendition
or compression side effects, to name a few. As discussed, many objective IQA methods
utilise some form of feature extraction or decomposition of the input image, commonly
based on models of the HVS, or models of error sensitivity. The impact of variations
in such features has been studied in the context of image quality assessment, however,
similar studies are limited in the case of visual realism. In order to model visual realism as
a function of particular image features, or distortions, it is paramount to first understand
how subjective human judgments change, when such distortions are detected.

Building on the above observations, this chapter evaluates whether visual realism can be
reliably modelled as a function of distortion perception and develops a psychophysical
model of human sensitivity to a set of local distortions common to image composites.
This is achieved through the use of synthetic composites - natural images with local
transformations applied in order to simulate distortions common to image composites.
Such synthetic composite images allow for individual distortions to be introduced in
a controlled manner, making it possible to measure human response to incremental
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changes. This also allows for mapping between the subjective responses and objective
image differences, as both the perfect appearance and the type and magnitude of the
introduced distortion are known a priori. Using these composite images, a two-alternative
forced-choice study is then carried out to measure average group JNDs for different
local composite distortions. These JNDs encode the amount of distortion required for
observers to reliably distinguish between the synthetic composites and corresponding real
images. Using approaches discussed in Section 2.3, psychometric functions are fit to the
collected responses in order to model the relationship between the magnitude of local
transformations and observer detection performance. The distortions introduced are based
on similar studies and include exposure shifts, contrast scaling and colour temperature
shifts. The resulting models are then evaluated and discussed in context of related work.

4.2 Background & Related Work

4.2.1 Importance of Visual Realism

Visual realism impacts systems well beyond aspects relating to quality or aesthetics. There
is evidence that human task performance can be affected by the visual realism of a virtual
environment or other task-specific image stimuli. This effect has been studied, particularly
in the context of visual search (Lee et al., 2013; Ragan et al., 2015) as well as navigation
in virtual spaces (Meijer, Geudeke and Van den Broek, 2009; Lokka et al., 2018). The
performance increase noted in more realistic VEs is sometimes explained by the subjective
increase in presence, which is often linked to task performance in VEs (Welch et al., 1996).
It is important to mention, however, that higher visual realism does not always correlate
with better task performance. Smallman and John (2005) argue that in many cases naive
reliance on highly realistic visual displays can be detrimental and provide evidence based
on geospatial data interpretation. This is corroborated in a subsequent study of visually
realistic map renderings, which result in longer navigation task completion times and
lower task accuracy compared to abstracted, less realistic line drawings of the same data
(Wilkening and Fabrikant, 2011). Since visual realism is not a universal concept (Ferwerda,
2003) and can be modulated by both task and stimuli, the need for efficient approaches to
its measurement and modelling is apparent. Understanding how visual realism is perceived
by humans, its relationship with visual attention and the image features relied upon by
observers to rate it, is paramount to its successful modelling.

4.2.2 Image Features Affecting Realism

As discussed in Section 2.4, visual realism is affected by a multitude of features of the
stimulus (Zhu et al., 2015). Related work discussed in Chapter 2 suggests that a) not all
properties of images are perceived with the same reliability by human observers, and b)
scene context seems to have a significant impact on the reliability of such perceptual tasks.

In addition to physical properties of the scene, local statistical differences introduced
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to regions of a photograph of a scene can also affect realism. This is illustrated by
Xue et al. (2012), who analysed the statistical relationships between image features of
objects and surrounding scenes in real photographs. They found that differences in
image features, such as brightness, contrast, saturation and colour temperature had a
significant impact on human realism judgments. In a different study, Fan et al. (2014)
conducted a survey asking observers to rank various semantic and visual attributes in a
dataset of real images and image composites. Another observer group was then asked
to rank the realism of these images. Spearman’s rank correlations between the resulting
realism rankings and visual attributes were then calculated, highlighting features which
significantly contribute to realism rankings. Their results align with the realism taxonomy
proposed by Ferwerda (2003), indicating a high correlation between realism rankings and a
photographic appearance. Other significant correlations included natural lighting, colours,
perspective, objects and combinations thereof, indicating the importance of naturalness -
the agreement between a photographic representation of a scene and its representation in
an observer’s prototypical memory. This is further confirmed by the fact that “unusual”,
“strange” or “mysterious” images were found to elicit lower realism ratings. This study
thus illustrates the significant impact of observer experience, showing familiarity and prior
visual experience correlate positively with realism judgments.

Controlled experiments assessing the impact of local transformations on attention in
natural scenes have been carried out previously, notably by Einhäuser and König (2003)
and Marius’t Hart et al. (2013) who assessed the impact of local contrast manipulation
in photographs of natural scenes on observer attention, using methods based on signal
detection theory. While not carried out in the context of image composites, these
experiments still provide a baseline of human performance in detecting local luminance
contrast shifts in natural images. They find that local contrast increases, particularly
those associated with objects, attract overt observer attention. However, these effects
are proportional to the magnitude of the contrast shift and do not occur for small shifts,
highlighting the need to establish JNDs in this domain and encode into functions for
automated processes, such as compositing.

4.2.3 Synthetic Image Composites

The task of image compositing is under-constrained. In order to perfectly match the
appearance of a foreground object to a background scene, it would be necessary to
understand and recreate the causal factors behind the appearance of this scene through an
inverse rendering process (Marschner and Greenberg, 1998). With this information, one
could insert any desired object into the recreated 3-D scene and perform forward rendering
in order to generate the resulting composite image. While inverse rendering pipelines do
exist, they currently only perform well for appropriately constrained scenarios, such as
facial re-enactment (Thies et al., 2016b). They also require 3-D models of the foreground
objects, often unavailable in the case of image-based compositing. Finally, application of
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this process is still likely to yield perceptually low-quality results, due to the imperfections
of even state-of-the-art inverse rendering pipelines.

Due to this under-constrained nature of compositing problems, much research into realistic
image compositing has been carried out under constrained conditions, in order to limit
the number of factors under study (see Section 2.4 for a discussion of factors impacting
perception of realism). For example, Xue et al. (2012) identified image properties
highly-correlated between the foregrounds and backgrounds of natural images and then
applied controlled offsets of these properties in natural images in order to simulate
compositing artefacts. Starting with natural images guarantees that the manually-
introduced distortions are the only variable between the real image and faux composite,
allowing for the mapping of such objective image-based differences to subjective quality,
or realism scores. The authors showed a relationship between disparities in foreground-
background feature distributions and observer realism ratings, however due to the small
number of images used in their perceptual studies, the results are difficult to generalise
to new images. A similar approach is adopted by Lalonde and Efros (2007), who
develop methods for assessment and improvement of composite realism through statistical
comparison of colour distributions. This is performed both against a global statistical
representation of colour in natural images, but also local co-occurrence of certain colour
palettes between the object and scene.

4.2.4 Difference Thresholds

Difference thresholds, or just-noticeable differences (JNDs) provide a practical framework
for mapping physical stimuli to perceptually-relevant scales. This allows for any physical
stimulus to be measured with respect to human perceptual sensitivity. Formally, unit JND
is the amount by which a given stimulus must be changed in order for a difference to be
detectable at least 50% of the time. JNDs are used extensively in various applications,
including perceptual metrics (Ferzli and Karam, 2009), perceptually-based image and
video processing (Jia, Lin and Kassim, 2006), colour image compression (Chou and Liu,
2008) and various models of vision (Lubin and Fibush, 1997). Accordingly, the JND can
be used as a universal unit of measurement of perceptual distances.

4.2.5 Towards Generalisable Models

Existing models of visual realism suffer from similar problems to the classical IQA
methods discussed in Chapter 2: they are commonly based on only a particular subset
of image features or distortions, require considerable time effort and a large pool of
observers, or computationally-expensive models of the HVS. Some of the most intuitively
explainable models, such as that proposed by Fan et al. (2014) or Fan et al. (2018),
while clearly describing the relationship between semantic properties of images and
subjective visual realism, significantly under-perform relative to humans when applied
to related image tasks, such as binary classification of realism, or localisation of relevant
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distortions. One of the main challenges of such semantically-based subjective models is
the mapping of qualitative visual features (e.g. ‘naturalness’) to image features. The
error sensitivity framework, used with considerable success in IQA (Wang et al., 2004),
offers an alternative solution to this problem by modelling sensitivity to different image
distortions or transformations. It allows for sensitivity to any type of distortion to me
modelled using a unified experimental methodology, making such an approach easily
transferable and extensible to other distortion types. This also enables the problem of
visual realism prediction to be broken down to component parts - the detection of relevant
features, their weighting, aggregation and mapping to a perceptual scale. Finally, the
inherent variability of subjective human judgements and the impact of scene content pose
a significant challenge for deterministic models, due to their under-constrained nature. The
use of probabilistic modelling provides an elegant approach to incorporating this implicit
variability, without the requirement for explicit modelling of its many causes. This, in
turn, allows for visual sensitivity baselines to be established, by aggregating over groups
of observers.

4.3 Methodology

4.3.1 Overview & Motivation

The purpose of this study is twofold. Firstly, it aims to model the baseline group sensitivity
of human observers to local distortions common to image composites, in the context
of subjective realism judgments. Secondly, it aims to produce insight into the process
undertaken by observers judging image composite quality, or realism, and determine how
distortion visibility impacts subjective perception of visual realism. Prior studies of visual
realism (discussed in Section 4.2) have focused primarily on global realism assessment,
focusing on tasks such as classification of real and computer-generated images. In such
studies, observers tend to assess the image as a whole. Instead, the work presented here
focuses on assessing the realism of combinations of objects and scenes - a fundamental
property of any image composite.

As detailed in Chapter 2, psychophysics provides practical methods for quantifying
relationships between physical stimuli and the associated perceptions evoked in human
participants. Specifically, the popular two-alternative forced-choice (2AFC) paradigm
provides an unbiased experimental framework for the estimation of JNDs. Here, this
paradigm is adopted in order to estimate average group JNDs for a set of local distortions
common to image composites. This is accomplished by requesting observers to perform
a binary discrimination task between a real image and a synthetic composite version of
that same image, for a range of images and transformation magnitudes. Average observer
performance for a set of transformation magnitudes is then fit with a sigmoidal function,
and the JND is estimated as the distortion magnitude corresponding to the half-way point
between guessing rate and perfect performance. A statistical evaluation of the results and
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N observers Feature Min scale Max scale Min offset Max offset
25 exposure 0.1 1.9 - -
25 contrast 0.47 2.27 - -
25 CCT - - -200 +200

Table 4.1: The parameter ranges used to generate stimuli for the experiments. Each of the three
feature ranges is linearly interpolated into 11 stimulus values.

models is then presented, and the models are applied to a range of images. This is followed
by a discussion of findings.

4.3.2 Experimental Design

The experiment uses a procedure based on the 2AFC design (discussed in Chapter
2) in order to estimate generalised JNDs for three types of local, object-based image
transformations, representing common feature mismatches found between the elements
of image composites: exposure, contrast and CCT. These JNDs and the psychometric
functions they are extracted from, describe average observer discrimination performance
as a function of relative feature offset magnitude, across a range of images depicting indoor
scenes. For each of the 3 stimuli types, observer performance is measured for a set of 11
feature offset magnitudes, across 165 base images. The details of stimulus ranges can be
found in Table 4.1.

4.3.3 Synthetic Composite Generation

In order to generate synthetic composites Ĩ, we follow the approach of Xue et al. (2012),
using a natural image I and a corresponding binary mask M :

Ĩ = I � (max(M)−M) + f(I, x)�M (4.1)

where f(I, θ) is a global transformation on image I, parameterised by θ and � refers to
the Hadamard product (Horn, 1990). This allows for a range of transformations to be
applied to the object region, without affecting the rest of the scene. Figure 4.1 illustrates
the process and component elements of a synthetic composite.

4.3.4 Composite Feature Selection

During generation of synthetic composites, three image features representing common
local composite distortions are selected for the transformation f in Equation 4.1:
exposure, contrast and correlated colour temperature. Each of these features represents
a commonly-occurring feature mismatch resulting from different conditions under which
the foreground and background of a given composite were captured. Exposure and
contrast approximate the effects of varying illumination conditions, while correlated colour
temperature represents colour variability due to illumination chromaticity differences
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Figure 4.1: Illustration of the synthetic composite generation process. A global transformation
f(I, x) is first applied to the input image. The mask M is used to separate the foreground
and background elements, which are then combined through pixel-wise addition. � refers to
the Hadamard product (Horn, 1990)

between the composite elements. Both these properties (natural colour appearance and
natural illumination) are highly correlated with realism, based on Fan et al. (2014,
2018). Previous work by Xue et al. (2012) has also identified these features as being
significantly correlated between the foregrounds and backgrounds of natural images.
Local transformations of these features are formalised below, assuming 8-bit images with
intensities in the range of 0− 255.

Exposure

In terms of image acquisition, exposure is the amount of light per unit area of the image
sensor, measured as a product of local illuminance and exposure time. Exposure thus
encodes both scene illumination incident on the sensor, and some settings of the camera.
According to Wright (2013b), in manual compositing, correction of the distribution of
pixel intensities is often the first and most important step to achieving a high quality
compositing result. Adjustment of exposure is one such operation, affecting both apparent
brightness, and contrast.

In this study, exposure shifts are implemented by scaling of pixel intensities in the V
channel of the image converted to HSV colour space. Only pixels belonging to the
foreground element are affected, as indicated by the binary mask M :
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V̂i,j =

Vi,j , if Mi,j = 0

aVi,j , otherwise
(4.2)

Here a is the value of the exposure scalar, Vi,j is the pixel intensity at row i and column j
of the V channel of the input image, Mi,j is the value at row i and column j of a binary
mask, where the truth value indicates pixels belonging to the foreground object. V̂i,j is
the new pixel intensity at row i and column j after application of the transformation.

In this study, exposure shifts are expressed in stops, where 1 stop is equivalent to doubling
the intensity of a pixel:

stop = log2

(2× Vi,j
Vi,j

)
(4.3)

Figure 4.2a illustrates the effect of applying local exposure shifts to an example image.

Contrast

Contrast describes the difference between the highest and lowest intensities in a given
visual stimulus. In the context of composite distortions, contrast can simulate disparities
in dynamic range and camera post-processing. In this study, contrast shifts correspond
to scaling pixel intensities in the V channel of an image in HV S colour space. Unlike
exposure, intensities are scaled around the middle grey value g = 128. Only pixels
corresponding to the foreground element are affected, as indicated by the binary mask
M :

V̂i,j =

Vi,j , if Mi,j = 0

b(Vi,j − g) + g, otherwise
(4.4)

Here b is the value of the contrast scalar, Vi,j is the pixel intensity at row i and column j
of the V channel of the input image, Mi,j is the value at row i and column j of a binary
mask, where the truth value indicates pixels belonging to the foreground object.

Similarly to exposure shifts, the contrast of an image can be expressed in stops, based on
its contrast ratio:

DR = log2

(
Vmax
Vmin

)
(4.5)

where Vmin and Vmax are the minimum and maximum intensity of the V channel of an
image in HV S colour space.
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In the case of a conventional 8-bit digital image, with a contrast ratio of 256 : 1 the
maximum DR is equal to 8 stops:

DR(256 : 1) = log2(28) = 8 stops (4.6)

Therefore, scaling the intensities of an 8-bit image by 50% around the mean intensity will
reduce the dynamic range by 2 stops, while scaling it by 200% would increase it by 2 stops,
however, this would result in clipping.

Figure 4.2a illustrates the effect of applying local contrast scaling to an example image.

Correlated Colour Temperature

Correlated colour temperature (CCT) is a measure of illuminant chromaticity and is
related to the spectrum of light emitted by a theoretical blackbody at a particular
temperature, measured in degrees Kelvin (Borbély, Sámson and Schanda, 2001).
Illuminants with lower temperatures emit reddish light, moving through orange, yellow,
white to blue, as the temperature increases. For example, candlelight (1500K) has an
orange-yellow colour cast, compared to an overcast sky (6500K), which in turn appears
more blue. As not all light sources are perfect theoretical blackbodies, or even incandescent
lights, correlated colour temperature is used as a way of describing the temperature
a theoretical blackbody radiator would need to reach to emit a given colour of light.
While the HVS accommodates to changing illumination chromaticities, in photography,
corrections must be made to avoid excessive colour casts. This is accomplished by setting
an appropriate white balance, given the average CCT of the illuminants in the scene,
resulting in a neutral appearance of white in the image. While CCT can be expressed in
Kelvin, a perceptually-aligned unit of CCT measurement is mired:

m = 106

T
(4.7)

where m is the mired value, T is the colour temperature in Kelvin. The Robertson method
(Robertson, 1968) is used to convert from CIELUV colour space to CTY (CCT, tint and
luminance). The conversion process is a table lookup and interpolation on the Planckian
locus (Wyszecki and Stiles, 1982) using the implementation by Wagberg (2020). CCT
offsets are then applied by linearly shifting the mired values for each pixel. Only pixels
corresponding to the foreground element are affected, as indicated by the binary mask M :

Ĉi,j =

Ci,j , if Mi,j = 0

Ci,j +m, otherwise
(4.8)

where m is the amount of shift in mired, Ci,j is the CCT value at row i and column j of
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the CCT channel of the input image converted from RGB using the Robertson method
(Robertson, 1968).

CCT is a convenient method to statistically describe the colour of illumination in a scene
and simulate disparities in scene illuminant chromaticity. Figure 4.2a illustrates the effect
of applying local CCT shifts to an example image.
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Exposure

Contrast

CCT

-ve −←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− null +−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ +ve

(a) An example of the stimuli used in the experiments. Top row: exposure scaling from 0.1 to 1.9; Middle row: contrast scaling from 0.43 to 2.27; Bottom row: CCT
offsets from -200 to +200 mired).

(b) The object mask used to generate the images in Fig. 4.2a

Figure 4.2
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4.3.5 Base Image Dataset

For the purpose of experimental stimuli generation using the features described in Section
4.3.4, a dataset consisting of 165 manually-segmented, natural images is sourced from
the SUN Database (Xiao et al., 2010). These images are selected manually by an expert
compositor to represent a wide range of everyday scenes, in order to cover a range of indoor
scenes and objects representing natural, everyday circumstances. The segmented objects
were selected to cover a wide range of relative object sizes. Moreover, manual selection
allows for elimination of unnatural or visually corrupted images. Figure 4.3 shows some
examples of selected images and corresponding binary masks indicating pixels belonging
to the segmented objects.

4.3.6 Dataset Statistics

In addition to manual filtering, a statistical analysis of the dataset is performed, illustrating
the distributions of high-level image properties across the entire set of images and objects
within them. As indoor scenes can be affected by artificial illumination, care must be taken
to ensure that bias is not introduced, for example, through oversampling scenes with low
illumination, or a particular illuminant chromaticity. This is particularly important in
the experiments discussed here, since both the colour and the intensity of the apparent
illumination are modified in the synthetic composite generation process.

Figure 4.4 illustrates some high-level statistical colour properties of this dataset, namely
the mean RGB values of each image in the dataset (Fig.4.4a) and their projections into
two different colour spaces: HSV (Fig.4.4b) and Lab (Fig. 4.4c). In each of these figures,
the colour of each point shows a visual representation of the mean RGB values of each
image, while its coordinates illustrate its values within the new colour space. The impact
of scene content and illumination chromaticity is visible here, with most mean colours
ranging between light blue, grey and light orange, tracing common illuminant colours.
Figure 4.5 shows the images corresponding to the orange (Fig. 4.5a), grey (Fig.4.5b) and
blue (Fig. 4.5c) X in each of the scatter plots. These images illustrate that even images
lying far from the centre of the dataset (in terms of mean RGB values) represent everyday
indoor scenes. Furthermore, a Shapiro-Wilk test performed on each of the distributions
of mean L, a and b values across the dataset fails to reject the hypothesis that samples
come from a normal distribution. This suggests that the dataset are not unrepresentative
of natural scenes, and covering a range of average illuminant colours and intensities.
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Figure 4.3: Examples of images used in the experiments. The binary masks in the top-left corner of each image show the object chosen for processing.
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Object Size Distribution

The segmented objects vary in size, measured as a function of total image area. Since
the effective size of visual patterns has a direct impact on perception of details and
consequently distortions, the relative size of the object must be sufficient for an observer
to extract relevant information from. Equally, the object should not occupy the majority
of the scene, to allow for contextual appearance information to be assessed by observers.
As this study focuses on the relationship between the appearances of the object and
surrounding scene, the majority of the foreground objects in the dataset occupy less than
50% of the total image area (see Fig.4.6).

Dataset Limitations

While the dataset presented here is collected to best represent transformations common
to image composites, it does not represent all possible transformations. For example,
while authentic image composites may include distortions of the pose, orientation, or
support of composited objects, the transformations introduced in this dataset only include
changes in the luminance and colour properties of the segmented objects, while not
considering transformations such as changing the position, or orientation of a particular
object. Accordingly, any models developed using this dataset will only be relevant to such
transformations. Furthermore, the distribution of object classes present in the dataset is
constrained by the sampling strategy adopted by the authors of the original dataset.

4.3.7 Apparatus & Task

The experimental environment is designed according to viewing conditions for
subjective assessments in laboratory conditions, recommended in Section 2 of the ITU
Recommendation BT-500 (ITU, 2002). This includes instructions for calibration of display
characteristics, ambient illumination, as well as specifications for experimental apparatus
and presentation of stimuli. During the experiment, each observer is required to view 165
2AFC stimulus presentations, selecting the most realistic of the two images presented,
based on the appearance of the object indicated by the binary mask.

Display & Environment

A self-calibrating Eizo ColorEdge CG247 monitor with a resolution of 1920× 1080px was
used. The display was set to the factory-calibrated sRGB profile and positioned in a
darkened room with no external ambient illumination. Observers were sat directly in
front of the monitor at a distance of 50cm and used a keyboard and mouse during the
experiment (see Fig.4.7).
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(a) Scatter plot of image-wise mean RGB values.

(b) Scatter plot of image-wise mean RGB values projected into
HSV colour space. The 3D position represents the coordinates
of each point’s RGB colour in HSV colour space.

(c) Scatter plot of image-wise mean RGB values projected into
Lab colour space. The 3D position represents the coordinates
of each point’s RGB colour in Lab colour space.

Figure 4.4: High-level visualisation of the image dataset used in this study.
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(a) (b) (c)

Figure 4.5: Illustration of some outliers from the image dataset. These images correspond to the
a) orange, b) grey, and c) blue X markers in Figure 4.4. The image in a) represents a very orange
scene, b) a bluish, mostly achromatic scene, while c) represents a dark blue scene.

Figure 4.6: Histogram of object areas as a percentage of the entire image area for each image in
the dataset.
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Figure 4.7: An illustration of the experimental setup. Observers use the mouse and/or keyboard
to provide responses.

Hello and thank you for taking the time to complete my test. Before you continue, ←↩
please take a few minutes to read this and fill in the information on the next page ←↩
. Please rest assured that any personal information you provide will be kept ←↩
private and will be not linked to the results of the test. Please read this page ←↩
carefully, as it will detail the task you are about to undertake. If you have any ←↩
questions at the end, feel free to ask the experimenter.

The experiment will run between 30 and 40 minutes (depending on how long you take to ←↩
answer). Please devote your full attention and try to make sure that your answers ←↩
reflect your opinion at the time (i.e. don’t just vote blindly / keep pressing one ←↩
button, regardless of what you think of the images).

Instructions:
- You will be presented with a set of 165 image pairs.
- Each pair will consist of two instances of the same image (usually containing a scene ←↩

with some objects).
- The properties of an object in one of the two images will be altered.
- The location of the object in question will be indicated on a third image (in black & ←↩

white, between the two main images).
- You will have 10 seconds to scrutinise the image pair (you will not be allowed to ←↩

vote during this time)
- You will then have 5 seconds to cast your vote. You must cast a vote within this time ←↩

limit.
- For each pair, you will be required to select the image that looks most realistic to ←↩

you.
- To make a selection you can either click on the A or B buttons above the images OR ←↩

press A or L on the keyboard.
- The differences between the images will range in intensity, and thus their ease of ←↩

detection. This is not a fault with the test.
- All image pairs require a vote, before the test finishes.

Listing 4.1: The instructions presented to each observer in the experiment.

Stimuli

During each trial, observers are presented with 3 images - the real image, a synthetic
composite version of that image and a binary mask indicating the pixels belonging to
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the foreground object. The order of the two images is randomised every trial, and the
binary mask stays in the centre (see Fig.4.8). Indicating the foreground object location
mitigates observer lapses due to performing visual object search, or completing the task
based on the wrong object. Furthermore, the order in which different images are displayed
is randomised for each observer to mitigate learning effects. No observer sees the same
image twice.

In alignment with ITU (2002), the images were displayed on an sRGB middle grey
background and observers were given 10 seconds to view each image pair, followed by
5 seconds to cast their vote. The task was to indicate which of the two colour images
looked more realistic. The verbatim instructions can be seen in Listing 4.3.7.
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Figure 4.8: An illustration of the stimulus displayed to observers during each trial. Left: the original image, Centre: binary mask indicating the foreground
object, Right: the synthetic composite with a CCT shift applied to the foreground object.
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4.3.8 Observers

A total of 75 observers, 33 female, mean age of 28.53 (SD = 10.54), are recruited from
a population of university staff and students. All observers are volunteers and are not
rewarded in any way. Observers are then evenly and randomly distributed into three
groups, one for each of the stimulus types. The selection process ensures that each observer
is presented with each of the 11 stimulus levels (see Fig.4.2a) an equal number of times,
but distributed across a variety of scenes. The experiment lasts ~40 minutes per observer.

4.3.9 Analysis of Results

The analysis of experimental results follows the recommendations of ITU Report BT. 1082-
1 Assembly (1990) and the procedures detailed by Wichmann & Hill (2001) Wichmann and
Hill (2001a,c). First, proportions of correct responses per stimulus value are calculated.
Here, “correct” is defined as selecting the original image, as opposed to the processed
image. Psychometric functions are fit to the resulting data points using the Psignifit
toolbox version 3.0 for Python Fründ, Haenel andWichmann (2011), which implements the
maximum-likelihood method presented in Wichmann and Hill (2001a). The psychometric
function ψ(x) describes the relationship between the probability of a correct response p,
and a given stimulus intensity x. This is commonly denoted as in Equation 4.9:

ψ(x;α, β, γ, λ) = γ + (1− γ − λ)F (x;α, β) (4.9)

Here, F (x;α, β) is a sigmoidal function. In this study, multiple such functions are evaluated
based on their goodness-of-fit to the empirical data. Specifically, the logistic function:

F (x;α, β) = 1
1 + exp (−x−α

β )
(4.10)

the Weibull cumulative distribution function:

F (x;α, β) = 1− exp ((−x
α

)β) (4.11)

and the Gaussian cumulative distribution function:

F (x;α, β) = 1
2

[
1 + erf(x− α

β
√

2
)
]

(4.12)

The parameters α, β, γ, λ of ψ define the shape of the curve, and correspond respectively
to its threshold, slope, lower (guess rate) and upper (lapse rate) asymptotes. The threshold
α of this psychometric function describes its displacement along the abscissa. Specifically,
it marks the stimulus intensity, for which the probability of a correct response is the same,
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as that of a guess. Assuming that γ = 0.5 and λ = 0, α corresponds to the stimulus
value yielding a .75 proportion of correct responses. The slope β describes the width, or
difference, between the 95th and 5th percentile point of the sigmoid F (x). In the 2AFC
scenario, the guess rate γ is fixed to 0.5, as the probability of a correct guess in an n-
alternative setting is 1/n. λ represents the probability of a stimulus-independent lapse -
an incorrect response, despite an arbitrarily high stimulus intensity. This value is used
to scale the threshold value according to asymptotic performance. The fitting process is
carried out using the Pool-then-fit method, adopted from Wallis et al. (2013). In order
to estimate goodness-of-fit for each model, the coefficient of determination (R2 measure)
and deviance for each model are calculated and compared. R2 describes the proportion
of total variance in the observed data explained by the model. If ȳ is the mean of the
observed data

ȳ = 1
n

n∑
i=1

yi (4.13)

SStot is the total sum of squares:

SStot =
∑
i

(yi − ȳ)2 (4.14)

and SSreg is the explained sum of squares:

SSreg =
∑
i

(ŷi − ȳ)2 (4.15)

where ŷ is the prediction of the model and ȳ, then

R2 = SSreg
SStot

(4.16)

Given a fit model M and a saturated model S the deviance of M is defined as

D = −2 log
(
LM
LS

)
= −2(log(LM )− log(LS) (4.17)

where LM is the maximum likelihood of the fit model and LS is the maximum likelihood
of the saturated model.

The model which achieves the lowest average deviance and highest average R2 across
all experiments is then selected for further analysis. For each parameter of the fit
psychometric function 95% confidence intervals (CIs) are calculated using the bias-
corrected and accelerated (BCa) bootstrap method (Efron and Tibshirani, 1986), as
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suggested by Hill (2001).

4.4 Results

This section details the results of the experiments. A total of 165× 25× 3 = 12375 data
points are collected in the entire study, 4125 for each of the three experiments. To ensure
that responses for any given image contribute equally to the model, two responses for each
image-offset combination are selected, resulting in 165× 11× 2 = 3630 total data points,
330 for each of the 11 stimulus intensities to which the perceptual functions are fit.

4.4.1 Goodness-of-fit Evaluation

The goodness-of-fit evaluation shows that experimental data is fit well by each of the
evaluated functions, achieving high R2 scores and comparable deviance between models.
Figure 4.9 illustrates each of the functions fit to mean correct response rates for each
stimulus level, across each feature under test. R2 scores and deviance measures are
indicated in each legend. No significant differences between the deviance residuals were
found across models for each feature, as determined by one-way ANOVA (p > 0.05). This
suggests that the experimental data is fit well by each of the evaluated models. The
following analyses use the model based on the logistic function.

4.4.2 Psychometric Functions & JNDs

The parameters of the logistic function fit to each of the sets of experimental data can
be found in Table 4.2 along with their 95% confidence intervals. The threshold values
represent the average group JNDs for each feature under test. For exposure shifts, these
JNDs can be expressed in stops: 0.30 and −0.54 stops for positive and negative exposure
shifts, respectively. This is also true of contrast, where these correspond to 0.50 stops
for positive shifts and 1.22 stops for negative shifts. JNDs for CCT are 82 mired for
positive CCT shifts and −94 mired for negative CCT shifts. Lapse rates are overall
highest for negative contrast offsets (19%), and lowest for negative exposure offsets (1%).
Figure 4.10 illustrates the 95% CIs for lapse rate estimates, which are widest for contrast
transformations, particularly negative ones. This suggests that observers performed
relatively poorly in the discrimination task for this transformation type, resulting in
relatively high lapse rates and wide CIs for the JND estimate.
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(a) Exposure (negative offsets) (b) Exposure (positive offsets)

(c) Contrast (negative offsets) (d) Contrast (positive offsets)

(e) CCT (negative offsets) (f) CCT (positive offsets)

Figure 4.9: Goodness of fit evaluation: Each figure shows proportions of correct responses for
each stimulus level (black dots). The lines indicate best-fitting cumulative Gaussian, logistic and
Weibull functions. Negative feature offsets are shown in the left column, positive in the right. The
horizontal error bars indicate 95%CIs for the stimulus level corresponding to 1 JND
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Feature α− (JND) β− λ− α+ (JND) β+ λ+

Exposure 0.69 [0.64, 0.77] 0.54 [0.33, 0.94] 0.01 [0.00, 0.04] 1.23 [1.10, 1.30] 0.64 [0.38, 1.62] 0.08 [0.01, 0.11]
Contrast 0.43 [0.30, 0.50] 0.38 [0.22, 1.03] 0.19 [0.01, 0.23] 1.41 [1.20, 1.58] 0.88 [0.50, 2.43] 0.11 [0.02, 0.16]
CCT −94.34 [61.14, 113.39] 182.92 [106.00, 349.03] 0.08 [0.01, 0.13] 82.40 [55.38, 94.86] 180.17 [120.97, 317.95] 0.07 [0.01, 0.11]

Table 4.2: Parameter values of logistic psychometric functions fit to the experimental data for each of the transformation features. Parameters follow naming
convention from Eq. 4.9 and 4.12. Parameters followed by − indicate fit for negative transformations, while parameters followed by + indicate fit for positive
transformations. Accordingly, α is the threshold of the respective psychometric functions, corresponding to 1JND.
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Figure 4.10: Mean lapse rates and their corresponding 95% confidence intervals for positive
(subscript p) and negative (subscript n) offsets of exposure (exp), contrast (con) and CCT (cct).

4.4.3 Qualitative Evaluation

In order to illustrate the generalised JNDs, local exposure, contrast and CCT shifts are
applied to a range of test images. Specifically, Equations 4.2, 4.4 and 4.8 are applied,
using the JND values from Table 4.2 as respective arguments.

Finally, the average discrimination performance ADP for each image-feature combination
is used to recover ‘difficult’ image-feature combinations, for which average discrimination
performance was lowest, and ‘easy’ image-feature combinations, for which average
discrimination performance was highest. This is performed by counting all correct
responses for a particular image-feature combination and dividing by the total number
of responses for that combination, as in

ADP = 1
n

n∑
i=0

ri (4.18)

where n is the number of responses for a given image and transformation feature and ri is
the ith response. Correct responses are encoded as 1 while incorrect ones as 0, therefore if
all responses for a given image-feature combination were correct, then ADP = 1.0. Visual
analysis is then performed in order to illustrate common properties of these examples,
which may impact observer sensitivity.
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(a) αexp− = 0.69 (b) Original (c) αexp+ = 1.23

(d) αcon− = 0.43 (e) Original (f) αcon+ = 1.41

(g) αcct− = −94.34 (h) Original (i) αcct+ = 82.40

Figure 4.11: The exposure, contrast and CCT JNDs visualised for an image from the experimental
dataset. The middle column contains original images, while the left and right columns contain
negative and positive JNDs for exposure, contrast and CCT offsets respectively, top to bottom.
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(a) αexp− = 0.69 (b) Original (c) αexp+ = 1.23

(d) αcon− = 0.43 (e) Original (f) αcon+ = 1.41

(g) αcct− = −94.34 (h) Original (i) αcct+ = 82.40

Figure 4.12: The exposure, contrast and CCT JNDs visualised for an image from the experimental
dataset. The middle column contains original images, while the left and right columns contain
negative and positive JNDs for exposure, contrast and CCT offsets respectively, top to bottom.
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(a) αexp− = 0.69 (b) Original (c) αexp+ = 1.23

(d) αcon− = 0.43 (e) Original (f) αcon+ = 1.41

(g) αcct− = −94.34 (h) Original (i) αcct+ = 82.40

Figure 4.13: The exposure, contrast and CCT JNDs visualised for an image from the experimental
dataset. The middle column contains original images, while the left and right columns contain
negative and positive JNDs for exposure, contrast and CCT offsets respectively, top to bottom.
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(a) αexp− = 0.69 (b) Original (c) αexp+ = 1.23

(d) αcon− = 0.43 (e) Original (f) αcon+ = 1.41

(g) αcct− = −94.34 (h) Original (i) αcct+ = 82.40

Figure 4.14: The exposure, contrast and CCT JNDs visualised for an image from the experimental
dataset. The middle column contains original images, while the left and right columns contain
negative and positive JNDs for exposure, contrast and CCT offsets respectively, top to bottom.
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4.5 Discussion

4.5.1 Overview

The results indicate that psychometric functions based on foreground-background
distortion perception paradigm can be successfully used to model perception of visual
realism in image composites. The experimental data are fit well by the proposed models,
and while some differences in observer performance are present between exposure, contrast
and CCT, the results obtained here are in line with previous work. Similar to Xue
et al. (2012), who evaluated the impact of foreground-background disparities, subjective
visual realism decreases as the disparity magnitudes increase. The psychometric functions
obtained can serve as probabilistic models to compare the relative change in exposure,
contrast or CCT required for observer detection. JNDs obtained in these experiments also
provide a perceptual scale for mapping between features and observer detection probability,
and accordingly serve as a predicate of their realism rating.

4.5.2 Observer Performance & Lapse Rates

Among all features evaluated, contrast offsets, particularly negative ones, yielded the
highest lapse rate estimates and widest lapse rate CIs (see Fig. 4.9c and 4.9d, and Table
4.2). Similar results have been obtained by Einhäuser and König (2003) who indicated
that a 60% reduction in peak contrast resulted in 78%±6% correct response rate, while an
80% increase in peak contrast resulted in an 81%±9% correct response rate. The contrast
model developed in this study falls within this range, yielding 72% correct response rate
for the negative offset and 84% for the positive one.

The high lapse rates for negative contrast offsets also mirror the results of Marius’t Hart
et al. (2013), who show that contrast in natural images is correlated with attention, and
decreases in contrast, particularly those applied to object regions, reduce fixation and
detection probability. The same is not true for relative increases of contrast, which is
reinforced in the work presented here. Thus, when matching the contrast of an object
to that of a scene, underestimating object contrast is likely to appear less unrealistic to
an observer than overestimating it, which will in turn attract attention to that object.
This is reflected in the lapse rates for negative contrast offsets - performance at 50% peak
contrast compared to 200% peak contrast is ~10% lower.

Both CCT and exposure covered offset ranges adequately, receiving 100% correct responses
for the highest offsets, in the case of some observers. Higher lapse rates for positive,
compared to negative exposure offsets can be explained by a slight difference in stimulus
ranges indicated by the pilot experiment. Additionally, it seems that some extreme CCT
offsets can be interpreted as plausible differences in object reflectance, increasing the lapse
rates, while still appearing realistic. The variability in responses for each offset level can
be attributed to image and object changes. This is consistent with studies by Tan et al.
(2015) and Xue et al. (2012), who found significant differences between the consistency
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of ratings for different images, as well as across participants. Through the use of a larger
dataset of 165 images, this work also indicates how much variability can be expected across
general composites. This subjectivity of realism judgements is further illustrated by the
threshold CIs in Table 4.2.

4.5.3 Qualitative Analysis

Both visualisation of generalised JNDs, and the analysis of ADP for different image-feature
combinations, provide further insight into the sources of variability in the resulting models.
One example of this can be seen in Figures 4.11-4.14, where average group JNDs are applied
to a selection of images from the experiment. In each of these figures, each row represents a
different feature (exposure, contrast and CCT, respectively), while the columns represent
feature offsets based on average group JNDs (negative 1 JND, no offset, positive 1 JND).
Comparing the same offsets applied to different object-scene combinations, it is clear that
the offsets are easier to distinguish in some object-scene combinations, while being almost
indistinguishable in others. The increase in CCT in Figure 4.14i is barely noticeable, while
the same offset applied to the jet, seen in Figure 4.12i, is more pronounced. Similarly,
the contrast shifts visible in Figures 4.13d and 4.13f are easier to notice than those in
Figures 4.11d and 4.11f. This suggests that the visibility of such distortions is a function
of both the original appearance of the object, as well as the type and magnitude of the
transformation applied to it.

Inspection of images with highest and lowest ADP provides further insight into the
properties of objects, which may influence detection of local transformations. Low ADP

contributes to higher lapse rate estimates in the proposed models, but can also shed light
on scene features which may be influencing this. Similarly, reviewing images for which
ADP is consistently high, may illustrate which image features may contribute to the
successful detection of such image transformations.

Object Texture

Both exposure and contrast transformations were detected less reliably when applied to
uniformly-coloured and low-contrast objects. This is visible when looking at the objects
in Figures 4.16 and 4.18. Each of these figures represents five scenes for which ADP was
lowest, when the transformed feature was exposure and contrast, respectively. Luminance-
based transformations applied to objects such as the statue in Fig. 4.16d, the carpet in
Fig. 4.18d or the sheet in Fig. 4.18e were not reliably detected by observers. This
could be related to their abstract or plain appearance and/or lack of visual detail, which
makes exposure or contrast transformations result in a plausible, albeit brighter or darker
appearance. Consider the vase in Fig. 4.16e, which, whether made darker or brighter,
would still appear plausible, since one can imagine a vase in many colours. Conversely,
the paintings in Fig. 4.15c, the car in Fig. 4.15d, or the blackboard in Fig. 4.17d are less
abstract, contain more visual detail, richer textures or a wider contrast range. The ADP
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Figure 4.15: Images with the highest average discrimination performance for stimuli with exposure
transformations.
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(a)

(b)

(c)

(d)

(e)

Figure 4.16: Images with the lowest average discrimination performance for stimuli with exposure
transformations.
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(e)

Figure 4.17: Images with the highest average discrimination performance for stimuli with contrast
transformations.
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(a)

(b)

(c)

(d)

(e)

Figure 4.18: Images with the lowest average discrimination performance for stimuli with contrast
transformations.
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for images containing these objects is highest, in the case of exposure and contrast shifts.

Nearby Illumination

Further investigation of scenes based on ADP also shows that, in addition to properties
of the objects themselves, sources of additional illumination near the transformed objects
in the scene tend to correlate with lower ADP . For example, in Fig. 4.16a the laptop is
directly underneath a bright desk lamp, in Fig. 4.15b the lamp is just in front of a natural
source of light, in Figs. 4.18a and 4.18b the camera flash is used, while Figs. 4.18c and
4.16d contain many visible sources of artificial illumination. If, in performing the task,
observers rely on internal estimation of object reflectance, then additional illumination
could introduce a confounding effect, resulting in lower ADP for such scenes.

Contextual Inference

Scenes featuring multiple objects sharing appearance features, such as the banners in
Figure 4.14, the sofas in Figure 4.13, or the container in Figure 4.17a, highlight another
interesting property of this discrimination problem. Namely, observers may rely on
semantically similar objects elsewhere in the scene to inform their decision. Looking at the
first example, the circular banner appears most plausible when a −120 offset (bottom-left
image) is applied, rendering its colour to be similar to the rectangular banner in the lower
left portion of the image. Since both banners share a logo, it is plausible they should share
their colour. In reality, the circular banner in the original version of this image must have
been affected by another illumination source, compared to the rectangular one. This can be
explained by the phenomenon described by Pont and te Pas (2006), whereby observers may
confound the effects of illumination with object appearance. A similar scenario can be seen
in the image featuring the blue sofas. Due to the variation in lighting, the background sofa
appears slightly darker than the foreground one. In this scenario, an increase in exposure
(top-right) may actually render the scene more plausible, due to the increased appearance
similarity between the two sofas. The final example (Fig. 4.17a), featuring the industrial
container, illustrates a similar scenario, with the opposite effect. Here, the uniform, orange
illumination across the scene made detection of contrast transformation easy for observers,
resulting in a top-5 ADP for this image. These examples indicate that observers may use
other scene elements when inferring the true appearance of a given scene element.

Object Chromaticity

Qualitative analysis of images with respectively highest and lowest ADP also indicates
that achromatic objects enabled observers to reliably detect CCT transformations applied
to these objects. Figures 4.19 and 4.20 show two sets of images for which ADP was highest,
and lowest, respectively. In the former, the majority of objects are largely achromatic, such
as the plinth in Fig. 4.19b, the bear in Fig. 4.19d or the mug in Fig. 4.19e). Conversely,
images with low ADP contain mostly monochromatic objects, commonly blue or yellow,
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Figure 4.19: Images with the highest average discrimination performance for stimuli with CCT
transformations.
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(d)

(e)

Figure 4.20: Images with the lowest average discrimination performance for stimuli with CCT
transformations.
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such as the seat in Fig. 4.20b, the cone in Fig. 4.20d or the vase in Fig. 4.20e.

4.5.4 Summary

Overall, the results of this study indicate that a framework based on error visibility can be
successfully adopted to model visual realism in image composites. As long as a composite
distortion can be approximately represented as a parametric transformation, the JND
framework can be reliably used to model visual realism as a function of distortion visibility
in a probabilistic setting. Importantly, the study has also gained insight into the process
performed by observers when assessing the realism of object-scene combinations in natural
images. The following findings have been made:

• Both the base appearance (colour, texture, illumination) and semantic properties
of composite objects can interact with particular transformations, and consequently
influence observer discrimination performance

• Observers may rely on different parts of the scene in order to inform their decision.
This sometimes overrides the influence of sheer transformation visibility, in favour
of increasing the appearance similarity of semantically similar objects in the scene

• Colour transformations applied to achromatic objects are reliably detected

• Transformations to man-made, abstract, plain or monochromatic objects may be
harder to detect and appear more plausible

• Additional sources of illumination in the scene can impact the reliability of observers
detecting transformations to nearby objects, particularly if these involve brightness
shifts.

• Observers, properties of the object and scene, as well as transformation type can all
impact resulting JNDs. As such, any predictive model for subjective visual realism
should generalise across observer groups, but not over object-scene properties,
instead using them as conditioning factors.

In addition, these findings also prompt several related questions:

• Are the resulting JNDs affected by explicit indication of object identity? Would
natural deployment of visual attention result in different JND values?

• Do visual attention patterns differ significantly as a function of transformation type?
Do observers rely on different parts of the scene to assess objects affected by different
transformations, e.g. colour vs brightness?

• How can models of visual realism be conditioned on object and scene semantics?

• Which elements of the scene are relied upon to arrive at subjective realism ratings?
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Based on the above, it is clear that subjective visual realism responses are not just a
function of sheer impairment visibility. Rather, they are a result of a more complex
process, based on inference and influenced by preference and properties of complex scenes
(Yuille and Kersten, 2006; Kersten, Mamassian and Yuille, 2004). The findings presented
in this chapter are further supported by the results of Tan et al. (2015), who found
significant differences in observer responses for the same disparities, across different scenes
and objects. Finally, it must be emphasised that subjective judgements are not always
reliable. Even in an ideal scenario, where both the reference and a modified version of an
image are present, and the location of the modified object is specified, observers may select
the real image as the ‘unrealistic’ one, despite visible errors. For example, several observers
reported difficulty in predicting the exact hue of monochromatic objects, when CCT was
offset, or judging correct exposure when objects were nearby strong sources of illumination.
Further research on scene perception, reflectance estimation and visual attention in natural
scenes is required to understand and model these scenarios appropriately.

4.6 Conclusions

This chapter has presented a probabilistic model of visual realism, based on human
perception of three key local image transformations representing common image composite
distortions: exposure, contrast and CCT shifts. The findings indicate that psychometric
methods and signal detection theory provide an adequate approach to modelling human
sensitivity to such local distortions, and that visibility of such distortions provides a
good proxy for visual realism, as indicated by the good fit of the proposed models to
the empirically observed data. These findings are in-line with previous research and
contribute both models and a methodology for modelling the impact of various local image
transformations on subjective realism perception in image composites. The re-application
of the models to the experimental dataset and investigation of average discrimination
performance illustrate the considerable impact of extraneous factors, such as scene context,
observer experience and attention. This shows that while relative distortion magnitude is
a good predictor of visual realism, modelling the impact of scene and observer attention
would likely improve the proposed models’ generalisability. Consideration should also
be given to understanding the impact of providing observers with the identity of the
transformed object during the experiment. It is possible that JNDs could shift if observers
fail to notice the transformed object in scenarios where they are not provided with its
identity.

The next chapter will further investigate this methodology in the context of visual
attention and task, focusing on how local and global scene properties affect the detection
and realism rating process, the role of top-down and bottom-up attention in subjective
visual realism judgments, and the impact of task, prior object knowledge, and transformed
image feature on gaze allocation.

120



Chapter 5

Impact of Attention, Task &
Feature Type

This work was published in:
Dolhasz, A., Frutos-Pascual, M. and Williams, I., 2017. Composite Realism: Effects
of Object Knowledge and Mismatched Feature Type on Observer Gaze and Subjective
Quality. 2017 IEEE International Symposium on Mixed and Augmented Reality (ISMAR-
Adjunct). IEEE, pp.9–14

5.1 Introduction

Chapter 4 presented the results of a study modelling subjective visual realism in
natural image composites as a function of local transformation magnitude. Analysis
of the obtained psychometric models highlighted the considerable impact of appearance
properties of the object and scene, as well as the inherent variability of subjective
judgments provided by human observers assessing visual realism. The design of the
study also controlled for the effects of visual attention, by providing explicit information
regarding the identity of target objects. In practical scenarios, however, it is often
desired to consider the effects of visual attention, for example, to reduce the amount
of processing applied to areas of an image composite reliably ignored by observers.
Moreover, if subjective realism judgements are significantly influenced by deployment of
visual attention, generalisable models of visual realism may not be achievable, without
reliable modelling of visual attention. Finally, deployment of visual attention may provide
indication about spatial and semantic strategies adopted by observers assessing visual
realism as a function of different local transformations. This could allow for extended
reasoning regarding the impact of semantic scene properties and further analysis of
scenarios where transformed objects are perceived as more realistic than their original
counterparts.
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To investigate these issues and determine the value of visual attention modelling in
composite realism assessment, this chapter adopts an eye-tracking paradigm in order to
capture fixation patterns of observers judging the visual realism of synthetic composites,
affected by local exposure and colour transformations. Eye tracking has been used
extensively to measure overt visual attention allocation in various experimental tasks,
including image quality assessment (Liu and Heynderickx, 2011). Gaze data can provide
rich insight into the relative importance of different image regions to the completion of a
visual task. By comparing standard gaze metrics (Bylinskii et al., 2015), such as spatial
and temporal distributions of fixations, of observers performing visual realism assessment
tasks, this chapter addresses the question of how visual attention, prior knowledge and
transformation type affect subjective realism judgments for a range of scenes and objects.
This chapter addresses the following research questions:

• Does prior knowledge of the composited object identity affect its realism judgements?

• Are different scene features attended to when the transformed feature changes?

• Do observers adopt different strategies, depending on the scene or transformed
feature?

5.2 Related Work

5.2.1 Visual Attention

Typical scenes encountered by the HVS contain many objects, constituting a large
amount of visual information. Due to its limited capacity for information processing,
the HVS does not treat all this information with equal importance. This often results in
competition between objects in the visual field for neural representation. Consequently,
the HVS exhibits a property of selectivity, which enables attended information to be
processed and unattended information to be largely ignored, thus conserving the limited
processing capacity (Desimone and Duncan, 1995). Visual attention (VA) is the collection
of mechanisms driving this selective behaviour and associated eye movements. There
is also evidence indicating VA may be required to combine features of objects, and
impacts short-term visual memory formation (Vecera and Rizzo, 2003). Attention has the
effect of reducing observers’ uncertainty in stimulus-related judgements and enhancing the
perceptual representation of attended objects, compared to unattended ones. The manner
in which VA is allocated between the competing stimuli depends on both the intrinsic
visual properties of the stimuli, known as bottom-up attention, as well as the task being
performed by the observer, known as top-down attention (Le Meur et al., 2006).

Bottom-up & Top-down Attention

Bottom-up VA is largely involuntary and influenced by the intrinsic features of visual
stimuli, collectively referred to as their saliency. Saliency describes the property of an
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Figure 5.1: Saliency framework proposed by Koch and Ullman (1987) consisting of parallel
extraction of low-level features across multiple channels and their fusion into a final saliency map.

object ‘standing out’ from its neighbours. Saliency and bottom-up VA are rooted in
evolutionary theory and are linked to the facilitation of survival, by deploying VA to the
most relevant information in a scene and responding to sudden threats, such as a predator
(Borji, Sihite and Itti, 2013). This suggests that saliency is computed rapidly across
the entire visual field (25-50 ms per item), prior to deployment of volitional attention,
which often requires additional eye movements (Itti and Koch, 2001). The bottom-up
saliency framework, originally formalised by Koch and Ullman (1987), poses saliency as
a weighted combination of different feature maps derived from low-level features of the
stimulus by the HVS (see Fig. 5.1). This approach to feature extraction and aggregation
is strongly rooted in Marr’s theoretical computational vision models, and also underpins
contemporary computer vision techniques, including convolutional neural networks, which
rely on hierarchical feature extraction and fusion for many common tasks. In the context
of compositing, a similar framework can be used for prediction of visual realism, whereby
various inconsistencies in an input image are extracted and weighted into a fused feature
map indicating local realism estimates. The challenge in both the VA and realism scenario
is the specification of features to extract.

In contrast, top-down VA is driven by the visual task at hand and consequently volitional
deployment of attention. As this process is controlled by higher cognitive areas, it requires
additional effort, compared to bottom-up VA (Itti and Koch, 2001). Top-down VA is
employed in tasks such as visual search, where the goal is to find objects with some pre-
specified properties. This allows for the HVS to attend to objects relevant to the task and
disregard any irrelevant information. Top-down VA has a modulating effect on bottom-up
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attention, for example by affecting the relative weightings of features contributing to the
computed saliency map, based on the demands of a given task (Treue and Trujillo, 1999).
Verbal comments of observers from the experiment presented in Chapter 4 suggest that
top-down attention plays a key role during the assessment of visual realism. Specifically,
observers reported comparing the appearance of the target object to objects with similar
appearance or illumination. If observers perform some inference based on relevant scene
content, the selection of relevant targets would require deployment of volitional attention.

Both top-down and bottom-up VA mechanisms tend to operate in parallel in everyday
scenarios, whereby attention is both modulated by the intrinsic properties of objects, as
well as top-down properties such as memory, task and context.

The Feature Integration Theory & Visual Search

Treisman and Gelade (1980), in her seminal work on focused visual attention, proposed
the feature integration theory, which aimed to reconcile the existence of the visual pop-out
effect (Wang, Cavanagh and Green, 1994), which implied the existence of pre-attentive
feature extraction and grouping, with the deployment of focused volitional attention.
Treisman’s feature integration theory posits that the HVS extracts multiple separable,
low-level features globally from a visual stimulus, before deploying focal attention to bind
these features together into a coherent percept. Based on this, she highlights two distinct
visual search mechanisms: feature search and conjunctive search. Feature search is the pre-
attentive feature extraction stage, responsible for the pop-out effect. It can be performed
rapidly, but only in scenarios where the target can be defined by a single feature. In other
scenarios, overt VA is deployed in a serial manner, fusing and evaluating combinations of
multiple features, before locating and identifying the target.

Accordingly, the authors showed that individual visual features can be detected and
identified in a parallel, pre-attentive fashion, without requirement for their explicit
localisation. However, conjunctions of features rely on application of serial focal attention
and cannot be identified without prior localisation. Analysis of real world scenes, in context
of a visual realism analysis task, relies on the process of visual search. For example, in order
to reliably rate the realism of a scene, observers must perform visual search to find evidence
of manipulation or editing. In some scenarios, particularly ones where the distortion is
really obvious, this may rely on feature search and the pop-out effect. However, for more
realistic composites (or more subtle distortions), conjunction search may be required to
identify and localise the ‘odd’ object.

Local and Global VA

VA can also be discussed in the context of scale of visual information attended. There is
evidence that VA is deployed at two distinct scales: global and local (Liechty, Pieters and
Wedel, 2003). Global VA acts as an initial guiding process, selecting components of the
visual field for local VA, which in turn extracts detailed information from these relevant
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Figure 5.2: Overview of Treisman’s Feature Integration Theory. Image courtesy of Treisman and
Gelade (1980)

regions. These two distinct mechanisms of VA - orienting and resolving - drive the process
of information selection and processing (LaBerge, 1998). Visual information extracted by
global VA processes is not only utilised for the purpose of orienting, but has been shown
to play a significant role in scene recognition (Biederman, Mezzanotte and Rabinowitz,
1982). Computational models of this process have been proposed by Oliva (2005). Local
VA is associated with top-down processes, which have been shown to significantly affect
where attention is deployed. For example, Ninassi et al. (2006) show that observers utilise
different visual strategies for assessing different types of image distortions, as well as
when performing different visual tasks. In the context of compositing and visual realism,
it is possible that significant distortions may trigger bottom-up, or global mechanisms,
attracting overt attention to the distorted region for further analysis. On the other
hand, minor distortions may require deployment of local, or top-down processes in order
to extract further task-relevant information. This transition between covert and overt
attention as a function of distortion severity can be motivated by much of the literature
discussed in Chapter 2, where some physical or semantic inconsistencies may go unnoticed,
while others are readily detected.

5.2.2 Modelling VA

Top-down VA is commonly modelled based on statistical analysis of empirical human gaze
data, commonly recorded using specialist hardware (Yarbus, 1967). Relevant literature
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on eye tracking is discussed in Section 5.2.4. In contrast, bottom-up VA is often rooted
in computational models of the HVS, or its particular mechanisms, such as the parallel
feature extraction and fusion framework proposed by Koch and Ullman (1987). Many
approaches to the task of computational VA modelling have been suggested, many focusing
on bottom-up attention and saliency, due to their relative simplicity and suitability for
computational modelling, based on the feature integration theory of attention (Treisman
and Gelade, 1980). The goal of such models is to accurately predict highly-probable
locations of human fixations in an image, thus pointing out attention-grabbing regions or
objects in an image, and representing this information as a 2-D probability map. This
makes the concept of attention or saliency maps attractive in the computational modelling
and image processing domains, as the saliency map can be directly used to spatially weight
the underlying image features.

Saliency maps can be generated adopting either a local approach, using centre-surround
differences computed in local regions, or a global one, utilising features of the entire
image. While being biologically-plausible, both approaches come with their distinct
advantages and associated problems. For example, local methods tend to overestimate
the saliency of object edges and high-frequency image content, while missing larger salient
regions, while global methods tend to work well for larger objects, but have trouble
dealing with highly-textured regions. Itti, Koch and Niebur (1998) in their seminal
work proposed a biologically-inspired bottom-up saliency-based model of VA. This model,
given an input image, generates a corresponding saliency map through successive stages
of colour, intensity and orientation feature extraction, centre-surround differencing and
linear integration of these features at multiple scales. This model served as a foundation
for multiple further developments, such as the graph-based saliency model of Harel, Koch
and Perona (2007) or the conditional random field-based approach of feature combination
put forward by Liu et al. (2011).

More recently, with the resurgence of deep learning, deep convolutional neural networks
(DCNNs) have been adopted to model saliency, achieving state-of-the-art results, by
performing end-to-end feature learning, extraction, integration and saliency prediction
(Borji, 2019). Despite this, human performance has not yet been matched. Examples of
this are plentiful, including Wang et al. (2015), Wang and Shen (2017), Zhao et al. (2015),
Pan et al. (2016), Pan et al. (2017) to name a few. The vast majority of deep learning-
based saliency prediction models learn the function mapping from image to saliency map
directly from empirical data. Differences between them are mostly rooted in training
data, model architecture and hyperparameters, with the general goal of approximating
the function performed by the observer HVS unchanged.

In addition to modelling saliency for static displays, such as images, temporal saliency
models have also been proposed, aiming to incorporate aspects such as object movement
into saliency predictions. For example, Marat et al. (2009) create both a static and
temporal saliency map from video input and combine both into a spatio-temporal saliency
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map. Bak et al. (2017) build on this approach by using deep convolutional neural networks
to both extract and combine the spatial and temporal saliency maps. While temporal
saliency models highlight an interesting future research direction (e.g. modelling the
entire realism assessment process), existing models would be challenging to adapt to static
displays, without disregarding the temporal aspect.

5.2.3 Applications of VA Models

VA modelling plays a crucial role in perceptual models, allowing for a relevance-based
ranking of visual stimuli and a perceptual weighting of image content to be computed.
This is particularly important in tasks where human performance needs to be matched
closely, such as image quality assessment or visual realism prediction. This is further
reinforced by the fact that allocation of VA has been shown to affect perceptual thresholds
(Orquin and Loose, 2013). Accordingly, there is evidence that distortions or disparities in
salient regions are more likely to contribute to a lower subjective quality score than those
in non-salient regions (Engelke et al., 2010). However, this effect is highly dependent on
context and task. For example, Ninassi et al. (2007) evaluated the impact of attention-
based spatial pooling functions on image quality scores and found that results were not
conclusive, suggesting nonlinear relationships between attention and distortion magnitude.
This evidence suggests that the interplay between attention, subjective rankings and
distortion type is highly variable as a function of image content, distortion and task.
This has significant implications for modelling of visual realism, which in turn depends
on multiple image features, as well as viewing contexts (e.g. free viewing or task-based
viewing). In order to accurately model this process in the context of composite realism,
it is important to verify whether the visual strategy deployed by observers changes as
a function of distortion type and whether prior knowledge about the distortion location
can change subjective realism scores. In the study presented in Chapter 4 the effects
of VA were controlled for by provision of explicit prior knowledge of the identity of
the composited object to observers. In practical scenarios, this information is scarcely
available, accordingly the detection of composite artefacts may be affected by deployment
of VA. Any computational model of VA, particularly ones used in perceptually-relevant
applications, should be relevant to the task at hand. This is both due to the difficulty of
VA modelling, as well as the impact of a task on VA allocation in humans. No prior studies
have investigated visual attention in the context of image composite realism. Accordingly,
an empirical study of overt VA could shed light on deployment of visual strategies and
illustrate the impact of factors such as transformation type, or prior object knowledge on
resulting visual realism ratings.

5.2.4 Gaze Tracking for VA Modelling

Tracking eye movements offers a reliable proxy for measuring overt VA. Human eye
movements can provide objective information complimentary to conventional subjective
ratings, such as questionnaires or rating scales (Elhelw et al., 2008). As eye movements are

127



paramount to acquisition of visual information while performing cognitive tasks, studying
how they are deployed can reveal visual strategy and features relied upon during the
completion of a task (Duchowski, 2002).

Eye movements are commonly analysed in terms of two canonical classes of events:
fixations and saccades. Fixations are short pauses over informative regions of stimuli
and are interspersed by saccades - rapid movements from one region of the stimulus to
another. In practice, eye tracking is commonly performed through measurement of eye
movements relative to some external stimulus, commonly a display or real world scene.
This is accomplished using head-mounted or desktop eye trackers, which capture images of
the observer’s eyes and recover the position and orientation of the pupils. This information
is then projected into the coordinate system of the stimulus. Thus, the instantaneous gaze
position can be recorded many times per second and spatially related to the stimulus.
The raw sampled gaze positions are then classified into fixations and saccades. Multiple
approaches to this process exist and rely on exploiting different features of the gaze
data. For example, velocity-based algorithms rely on the fact that fixation points have
low velocities compared to saccades. Dispersion-based algorithms evaluate the spread of
gaze data under the assumption that fixation data points tend to be spatially clustered
together, while saccades are spatially spread out. Salvucci and Goldberg (2000) provide a
taxonomy and overview of existing fixation detection methods, while Komogortsev et al.
(2010) provide a set of performance metrics for evaluation of different fixation detection
algorithms. Non-parametric approaches have also been proposed, removing the need for
manual parameter tuning (König and Buffalo, 2014).

Examples of the use of gaze data in the assessment of visual strategy and attention exist
in both free-viewing conditions (Yarbus, 1967), as well as specific tasks such as reading
(Reichle et al., 1998), visual search (Rajashekar, Cormack and Bovik, 2004), objective
image quality metrics (Ninassi et al., 2007), decision-making (Orquin and Loose, 2013),
scene perception (Henderson and Hollingworth, 1999) and subjective quality evaluation
(Venkatesh and Sen-ching, 2010). However, there are few cases of gaze data used in
subjective evaluation of visual realism. Zangemeister, Sherman and Stark (1995) used
eye tracking to analyse visual strategies when viewing abstract and realistic art. Ninassi
et al. (2006) used objective eye metrics to study the impact of task on VA in subjective
image quality assessment through comparing empirical fixation maps. Elhelw et al. (2008),
studied the impact of different image features on the perceived realism of real and synthetic
bronchoscopy images. Finally, Vu et al. Vu, Larson and Chandler (2008) assessed the
impact of common global image distortions, such as blurring, noise, packet loss and JPEG
compression artefacts on fixation patterns.

5.2.5 Visual Tasks & Gaze Metrics

Commonly, fixations and saccades are spatially and/or temporally aggregated to reveal the
distribution of overt attention. Additionally, properties of individual fixations or saccades
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can be aggregated and compared. The specific metrics used for analysis of gaze data differ
depending on the experimental design. A wide range of fixation metrics have been used for
a number of different experimental scenarios and visual tasks (Rayner, 1998; Gegenfurtner,
Lehtinen and Säljö, 2011; Bylinskii et al., 2015; Sharafi et al., 2015).

Fixation Count / Ratio

Fixation count refers to the number of fixations in a given region of the stimulus, commonly
calculated within a fixed time frame. Fixation counts are commonly related to the
informativeness of a particular region in an image and positively correlate with visual
effort (Rayner, 1998). Fixation counts can also be normalised and represented as a ratio
of all fixations in order to compare relative informativeness of different regions in the
stimulus.

Fixation Duration

Fixation duration describes the time needed to analyse a given stimulus. Longer fixation
durations correlate with more visual effort required for a given region of the stimulus
(Rayner, 1998). This is commonly related to the difficulty of a given visual task. For
example, Levy-Schoen (2017) found that mean fixation durations were shorter for silent
reading, compared to reading aloud. This is also true for visual search tasks. Redundancy
or predictability (Nattkemper and Prinz, 1984), as well as the overall complexity of a
visual search task, were shown to influence fixation duration Moffitt (1980).

Fixations on Target

In tasks which rely on a target region in the stimulus, such as visual search, early fixations
should be interpreted differently from later ones. This is due to the fact that early fixations
tend to be driven by bottom-up VA mechanisms, as opposed to later fixations, which result
from task-related top-down attention processes (Jacob and Karn, 2003). In addition to
this, the duration of early fixations on target objects has been shown to be a positive
indicator of their task-related information content (Henderson and Hollingworth, 1998).

Area of Interest

Grouping fixations by semantic regions they fall on (e.g. objects in an image) allows for
area of interest analysis. Gaze maps can also be generated and compared by aggregating
fixations over time and representing them as 2-D distributions. These can be compared
across scenes or observers using common distribution similarity metrics in order to identify
significant differences between areas of interest.

Observer Metrics

When performing gaze analysis across groups, measures of intra- and inter-
group consistency allow for distinctions between bottom-up and top-down processes.
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Marius’t Hart et al. (2009) suggests that any bottom-up model of attention must ensure
high inter-observer consistency in order to make saliency predictions. Thus, observations
of high consistency between observers may be an indicator of the precedence of bottom up
processes over top-down ones. This is particularly important when taking the magnitude of
distortions into consideration. Large magnitude distortions in images are likely to attract
attention more consistently, compared to subtle ones. Similarly, top-down factors, such as
prior knowledge or instructions, can also increase this measure through constraining the
options presented to observers.

Intra-observer measures allow for such evaluation between individual stimuli presented to
a single observer. This allows for the assessment of variations in stimuli on observer gaze
statistics.

5.2.6 Application of Gaze Metrics

While a considerable proportion of gaze tracking research has focused on analysis of
reading, efforts to understand eye movements in visual search and scene understanding
(Rayner, 1998), both of which are closely related to the task of image composite realism
assessment.

Scene Analysis

Prior research (Rayner, 1998) suggests that during scene analysis, observers abstract the
gist of the scene within the first few fixations. Following this, Yarbus (1967) points out
that observers continue to extract relevant information from the scene through deployment
of additional fixations. Objects that are informative, important or appear out-of-place in
a scene are often fixated for longer (Antes, 1974; Friedman, 1979; Loftus and Mackworth,
1978), suggesting that severe distortions in images, or image composites, may attract
observer attention. Furthermore, scene context can sometimes have an immediate effect
on object processing. For example, Boyce and Pollatsek (1992) found that background
information extracted from the first and second fixations aids object identification. This
indicates that immediate scene context, as well as the contrast between the appearance
of the object and its local neighbourhood, should be considered in visual search and
discrimination tasks.

Visual Search

Similar to the scenario of scene analysis, in visual search, the properties of the task and
stimulus tend to affect the specific pattern of VA deployment. For complex visual search,
such as the search for complex features in a natural image, Zelinsky et al. (1997) showed
that observers have a central bias, deploying initial fixations to the centre of the display,
before recursively deploying fixations to smaller groups of objects in the display.
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5.2.7 Summary

VA is a fundamental mechanism of human visual perception, particularly when visual
stimuli represent natural, real-world scenes. Aside from semantics and scene content, VA
is heavily modulated by task, where bottom-up processes co occur with top-down, task-
dependent and volitional shifts of attention. Prior research has shown that the eye tracking
paradigm, along with a set of gaze metrics, can be an accurate tool for measurement of
VA allocation in a range of scenarios, including ones closely related to assessment of
visual realism in image composites, such as visual search and scene analysis. While many
general models of VA exist in the literature, none of them have been designed with image
composite assessment and associated peculiarities in mind, making them challenging to
apply without extensive evaluation and modification. Furthermore, Chapter 4 illustrated
that top-down processes play a clear part in this task, suggesting that saliency models
may not explain observer behaviour sufficiently in this context. In order to understand
the potential impact of VA of the task of composite image assessment, as well as the
generalised psychometric models of visual realism proposed in the previous chapter, a
subjective gaze tracking study is proposed.

5.3 Methodology

5.3.1 Overview

The study presented here evaluates how local transformation type and prior object
knowledge affect observer gaze metrics and subjective realism ratings. This is accomplished
through statistical comparisons of fixation data collected from 4 groups of 15 observers
performing a visual realism rating task using stimuli described in Chapter 4. Under
this paradigm, significant differences between group behaviour can be highlighted and
through extraction and comparison of attention maps, areas of interest can be identified
and compared across groups, providing insight about the visual information most relevant
to the task.

In Chapter 4, three different transformation types were evaluated: exposure, contrast and
CCT shifts. Of these, contrast transformations were found most challenging to reliably
detect by observers. In order to reliably compare between distributions of fixations for
multiple conditions, contrast transformations are excluded in this study. Instead, both
exposure and CCT transformations are considered, particularly due to the similarity
of their lapse rate estimates, indicating comparably low average observer error rates,
compared to contrast. In addition, the impact of prior object knowledge, and, by proxy,
task-relevant instructions likely to guide VA is also assessed. Accordingly, a between-
groups 2×2 factorial design is adopted in order to measure the impact of two independent
categorical variables:

• local transformation type: exposure (E) and correlated colour temperature (C)
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• prior object knowledge: unknown (U) and known (K)

The dependent variables are represented by various fixation metrics, derived from the
collected gaze data. They are:

• fixation count

• fixation duration

• time to first fixation on target object

• area of interest similarity

• inter-observer consistency

• response time

• realism rating

and are introduced in Section 5.2.5 and discussed in the context of the experiment in
Section 5.3.6.

Using the 2× 2 factors described above, 4 experimental conditions are defined (see Table
5.1): EU (exposure, unknown), EK (exposure, known), CU (CCT, unknown), CK (CCT,
known). To ensure that observers view images in a natural context, the 2AFC procedure
adopted in Chapter 4 cannot be used, since observers are able to see the processed and
unprocessed image at the same time. Instead, the experimental procedure selected is an
adaptation of the double-stimulus impairment scale (DSIS) method (ITU, 2002), where, in
each trial, observers are requested to indicate if an object-scene combination affected by
a particular local transformation appears realistic or unrealistic, given a reference image
displayed prior to the test image. In this scenario, distribution of VA for the test image is
task-specific and not corrupted by fixations intended to compare between multiple images.
If the transformation type or prior object knowledge significantly affect perceived realism
or assessment strategy, this should be reflected in group realism ratings and overt attention
distributions, respectively.

In the wider context of this thesis, the main application of this study is in assessing
whether deployment of visual attention can significantly change resulting subjective
realism judgments. A positive answer to this question would suggest that VA modelling
be explicitly incorporated in any systems attempting to predict human realism responses.
Moreover, in this scenario, realism responses would likely depend on the content presented
to the viewer immediately prior to the realism judgment. Conversely, a negative answer
to this question allows any downstream modelling of human realism perception to safely
forgo explicit modelling of human visual attention.
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Prior Object Knowledge
Unknown Known

Exposure Group A (EU) Group B (EK)
Transformation Type CCT Group C (CU) Group D (CK)

Table 5.1: Experiment design, showing 2× 2 factorial design and assigned observer groups.

5.3.2 Stimuli

To generate the composite images serving as the stimuli for the experiment, the synthetic
composite approach used in Chapter 4 is adopted. Specifically, 33 images with segmented
objects are selected from a subset of the SUN Dataset used in Chapter 4. The images
are selected to cover a range of object types and luminance values, according to the mean
luminance of the segmented objects, calculated in the CIE L∗a∗b∗ colour space. The
selection is made such that in each image, the segmented objects occupy no more than
1/3 of the total image area. The horizontal resolution of the images is normalised to 600
pixels (px), preserving the aspect ratio. At a 65 cm viewing distance, 37 px on the screen
correspond to 1◦ visual angle (VAn). Examples of these images can be seen in Chapter 4,
e.g. Figures 4.15 through 4.20.

For each base image, two synthetic composites are generated by applying a local exposure
and CCT transformation to the segmented object. Based on the lower performance
on contrast shifts observed in Chapter 4, contrast transformations are omitted in this
study. The image-magnitude combinations are fixed across all conditions, meaning
that for each base image, the magnitude of the exposure or CCT transformation is
kept the same across both object knowledge conditions. As in Section 4.3.4 exposure
transformations are implemented using a scaling of the V channel of HSV colour space,
whereas CCT transformations are implemented using an additive offset in the perceptually
uniform mired space. The transformations applied to the objects are varied in terms of
magnitude: exposure is scaled in 11 logarithmically spaced steps between .3162 and 3.162,
corresponding to a range of -1.661 to 1.661 in log2 domain. CCT is offset in 11 increments
of 40 mired, between -200 and 200 mired. The order of relative offset intensities is kept
the same for exposure and CCT. Examples of offsets applied to an image can be seen in
Figure 5.3.
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Exposure (scalar)

0.316 −←−−−−−−−−−−−−−−−−−−−−−−−− 1 +−−−−−−−−−−−−−−−−−−−−−−−−−−−→ 3.16
CCT (mired)

-200 −←−−−−−−−−−−−−−−−−−−−−−−−− 0 +−−−−−−−−−−−−−−−−−−−−−−−−−−−→ +200
Figure 5.3: Offsets applied to segmented objects in test images. Top row: exposure offsets (scalar multiplication); Bottom row: CCT offsets in mired
(subtraction / addition)
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5.3.3 Observers

Sixty (60) observers, recruited from a population of university staff and students, are
randomly assigned into 4 groups of 15 observers (see Table 5.1). All observers are
volunteers and are not rewarded for their participation in the study. The following groups
are compiled: Group A (condition EU) with a mean age of 26.00 (SD = 5.76) 7 females,
Group B (condition EK) with a mean age of 25.93 (SD = 4.32), 7 females, Group C
(condition CU) with a mean age of 28.47 (SD = 4.81) 6 females and Group D (condition
CK) with a mean age of 32.27 (SD = 8.15) 7 females. All observers are checked for
normal or corrected-to-normal vision and normal colour vision, using a SNELLEN chart
and Ishihara test. Each observer is requested to provide consent to take part in the
experiment and is naïve to its purpose.

5.3.4 Apparatus

Display

Images are displayed on a 22" 60 Hz Ilyama ProLite B2280HS LED monitor, calibrated
to sRGB colour space using an X-Rite i1 Display Pro calibrator. The monitor is placed
in an evenly illuminated room, and the calibration is corrected for both the chromaticity
and intensity of the ambient illumination. The maximum measured luminance level of
the display is 214 cd/m2, while the black luminance is .375 cd/m2. When displayed, the
images occupy 11.8◦× 7.9◦ VAn.

Eye tracker

A Tobii X1 Light eye tracker is fixed below the display at a distance of 65 cm from the
observers’ head (see Fig. 5.4), as recommended by the manufacturer. Average binocular
accuracy, as reported by the manufacturer, is .4◦ VAn and an average precision is .2◦ VAn
at the selected viewing distance. Its typical sampling rates fall between 28-32 Hz. The eye
tracker compensates for head movements of up to 44 cm horizontally and 32 cm vertically,
removing the need for a chin rest. The device is recalibrated for each observer, following
the manufacturer’s recommendations (Tobii, 2012).

5.3.5 Procedure

Preparation

Observers are first asked to familiarise themselves with the instructions and shown
examples of the reference (original unmodified - see Fig. 5.5a) and test images (processed
object - see Fig. 5.5b). Observers are then given an opportunity to ask questions, before
commencing the experiment.
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Figure 5.4: Experimental setup: Observers are positioned at a distance of 65cm from the display.
The eye tracker is mounted at the bottom of the display and re-calibrated for each new observer.
During the experiment, observers use a mouse to provide their responses.

Trials

The experiment consists of 33 trials, broken into 3 sessions with short breaks in between.
During each trial, observers first see a reference image, which they are instructed to
analyse. In the case of conditions EK (Group B) and CK (Group D), a binary mask
is also displayed next to the reference image, revealing the identity of the foreground
object of interest (see Fig. 5.5a). This stimulus is displayed for 10 seconds, followed
by a 3-second middle grey screen to ensure change blindness (Wolfe, 2000). Next, the
test image is displayed (see Fig. 5.5b), which contains the effects of a local exposure or
CCT transformation applied to the segmented object. The observers’ task is to provide
a binary realism rating of the test image with respect to the reference image. Observers
have 10 seconds to analyse the test image and click the button corresponding to their
chosen answer. They are also requested to respond as quickly and accurately as possible.
This procedure is repeated for each observer. Listing 5.1 shows the verbatim instructions
provided to all observers.
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(a) Reference screen (binary mask only shown to observers from groups B and D)

(b) Test screen

Figure 5.5: Illustration of reference and test stimuli and associated interface presented to observers
during the experiment. a) Reference screen, containing an unmodified version of an image and, in
the cases of groups B and D, a binary mask indicating the target object. b) Test screen, containing
a transformed version of the image from the reference screen. The transformation is only applied
in the target area indicated by the binary mask. The binary mask is only displayed to groups B
and D, while groups A and C only see the original and modified image. Observers are asked to
provide a binary rating of the realism of the test image in comparison to the reference by clicking
the corresponding button.

137



Hello and thank you for taking part in this experiment.

The task:

1. In this experiment you will be shown 3 series of 11 images.

2. During each trial you will see two instances of each image.

3. FIRST, you will see a reference image - make sure you familiarise yourself
with this image. You will have 10 seconds to do this.

--
Groups B and D only:
(The location of the target object will be indicated by a black & white image.)
--

4. After this you will see a grey screen for 3 seconds.

5. Then, the SECOND version of the same image will be displayed.
One of the objects in this image will be modified/adjusted in some way.

--
Groups B and D only:
(This is the object indicated by the black & white image in the previous screen.)
--

6. Your task is to decide whether the second image appears REALISTIC or UNREALISTIC.
You can do this by pressing a one of the two buttons using the mouse.
You will have 10 seconds to do this.

7. IMPORTANT:
The speed and accuracy of your response for the SECOND image will be measured.
Please respond as quickly and accurately as you can.

During the experiment, the position of your gaze will be tracked.
Please stay as static as possible and do not move between trials.

Listing 5.1: The instructions presented to each observer in the experiment.

5.3.6 Analysis

Fixation Extraction and Fixation Maps

Fixations and saccades are extracted from the raw eye position data using the ClusterFix
package for MATLAB (König and Buffalo, 2014). Resulting fixation locations are
then aggregated into fixation maps (sparse 2D histograms) Fo, for each image-observer
combination. Only fixation data from the image region is used in this process. Fixations
falling outside the reference and test image regions (such as the user interface) are rejected.
Joint fixation maps Fjoint are then generated by normalising and averaging fixations for
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each image across all observers from a single condition:

Fjoint = 1
N

N∑
o=1

Fo∑H
i=1

∑W
j=1 Foij

(5.1)

Here, F oij denotes element at row i and column j of fixation map Fo, H and W denote
the height and width of the image, and Each joint histogram is normalised by the sum of
its elements N , in order to avoid biasing the joint fixation maps towards observers with
higher fixation counts. As such, each bin of the fixation map represents a proportion of
task time a location was fixated by an observer.

Eye Movement Metrics

The following fixation metrics are used:

• fixation count (Fc)

• fixation duration (Fd)

• time to first fixation on object (TFFO)

• duration of first fixation on object (DFFO)

As discussed in Section 5.2.5 Fc correlates positively with the amount of information to
be attended and task difficulty and Fd relates to the usefulness of particular regions to
task completion and overall difficulty of information extraction. A distinction must be
made between early fixations, driven by bottom-up VA mechanisms, and later fixations,
driven by top-down mechanisms. Accordingly, shorter TFFO can be an indicator of an
object attracting bottom up VA (Jacob and Karn, 2003) and longer DFFO can point to
an object’s task-relevant semantic informativeness (Henderson and Hollingworth, 1998).
Furthermore, Fd can be affected by scene context, e.g. objects that do not belong in
the scene tend to attract longer fixations than objects that do (Rayner, 1998). These
properties allow for reasonable interpretation of significant differences between groups in
terms of visual effort and task-relative usefulness of image features.

Fixation Map Metrics

To assess similarity between observers’ fixation distributions within one condition, the
inter-observer consistency (IOC) measure is used (Le Meur and Baccino, 2013), specifically
the “one against all” approach. This compares the fixation map of each observer against
a joint fixation map of all other observers using a similarity metric. The area of interest
similarity (AOIS) measure is also adopted, encoding similarity between joint fixation
maps across experimental conditions.

Many standard methods for calculating the similarity between joint fixation maps exist.
Methods such as Area Under the Receiver Operator Characteristic curve, Kullback-Leibler
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Figure 5.6: Visualisation of a heatmap generated from the distribution of individual fixations,
marked with x.

divergence, or Earth Mover’s Distance (see Riche et al. (2013) for a review). Many of these
methods present the problem of comparing predicted saliency maps against ground-truth
fixation maps as a classification evaluation problem. In the scenario presented here, there
is no objective ground truth, since both fixation maps being compared are empirical, and
the goal of comparing them is to obtain interpretable measures of similarity. Accordingly,
for both IOC and AOIS, the similarity score (SS) is used, as recommended by Riche
et al. (2013). A key benefit of this metrics is that it is bound between 0 and 1, allowing for
straightforward interpretation of the results, as opposed to unbounded and asymmetrical
methods such as KL-divergence. The similarity score approach computes the sum of the
minima between each point of two probability distributions:

SS(P,R) =
∑
i,j

min
(
Pi,j , Ri,j

)
where

∑
i,j

Pi,j =
∑
i,j

Ri,j = 1.0 (5.2)

P and R represent discrete 2D probability distributions (PDs). We convert discrete
fixation maps to PDs by placing a Gaussian with σ = 1◦V An at the location of each
fixation in order to model uncertainty in viewing location caused by the accuracy and
precision of the eye tracker, as in Le Meur and Baccino (2013). See Figure 5.6 for an
example of a heat map visualisation of fixation distributions, along with the original
fixations, marked as red ‘x’ symbols.
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Statistical Measures

Non-parametric Monte-Carlo-based methods, proposed by Efron and Tibshirani (1994),
are used to analyse gaze metric distributions. Specifically, bootstrapping is used both to
estimate the means/medians of the eye movement metrics from the empirical samples, as
well as calculate their 95% confidence intervals (CIs), standard errors and bias. The
bias-corrected and accelerated (BCa) method is used to calculate CIs (Owen, 1988).
Furthermore, bootstrapping techniques are also used to compare group differences and
effect sizes. Fisher’s permutation test Odén and Wedel (1975) is adopted as a means for
testing the statistical significance of differences between groups. The chosen statistic for
this procedure is the difference of means (x̄1 − x̄2), unless the empirical data distribution
is heavily skewed - in such cases the difference of medians is used, as this is less sensitive
to high variance. The number of simulated samples for the bootstrap procedures and
permutation tests is 5000. When computing correlations across realism responses, Pearson
correlation is used.

5.3.7 Qualitative Analysis of Fixation Maps

In addition to the statistical evaluation presented in preceding sections, fixation maps are
evaluated visually, both for purposes of quality assurance, but also in order to perform
qualitative assessment of attention patterns. A simple methodology is developed for
this task: each heatmap is assessed to find the most attended objects, and to evaluate
how attention is distributed throughout the semantic content of the scene. This process
provides an additional means of hypothesis verification, as well as providing a source of
information about potential influences of scene semantics on particular gaze statistics.

5.3.8 Hypotheses

To evaluate whether the factors under test affect deployment of observer attention and
subsequent realism responses, a selection of relevant gaze metrics are compared between
conditions. Based on the results from Chapter 4 and a review of visual attention literature,
the following hypotheses are evaluated:

Eye Movement Metrics:

H1: Fixation counts (Fc) for groups with prior object knowledge will be lower.

H2: Fixation durations (Fd) for groups with prior object knowledge will be higher.

H3: Time to first fixation on target object (TFFO) will be shorter for groups with prior
object knowledge.

H4: Duration of first fixation on object (DFFO) will be longer for groups with prior
object knowledge
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Fixation Map Metrics:

H5: Inter-Observer Consistency (IOC) will not be affected by either of the factors

H6: Area of Interest Similarity (AOIS) will be highest for groups sharing object
knowledge priors

Task Performance:

H7: Realism ratings will be lower for groups with prior object knowledge

H8: Response times will be shorter for groups with prior object knowledge

Justification

Overall, it is expected that prior object knowledge is likely to make the overall task
easier, by reducing the need for observers to perform visual search, providing them
with task-relevant information and reducing uncertainty. Consequently, groups where
prior object knowledge is provided may be able to notice more visual inconsistencies,
compared to groups without this information, resulting in lower average realism scores
(H7). Hypothesis H1 indicates that this reduction in uncertainty and visual search will
in turn reduce the number of fixations required for observers to make a decision, also
shortening overall response times, as indicated by H8. As fixations of observers in these
groups are likely to land on task-relevant regions, H2 accordingly predicts that they are
likely to be on average longer. Accordingly, H3 and H4 suggest that observers will fixate
on the target object sooner and for a longer duration when they are aware of its identity.
No significant differences in inter-observer consistency are expected between groups, as
indicated by H5. However, the locations attended by observers may be more similar
for groups where the target object is made explicit, as indicated by H6, since observers’
attention is guided there by the binary mask in the reference screen. Accordingly, groups
with prior object knowledge may contribute to higher measures of IOC.

As no prior studies have assessed perceptual differences between transformation features
in this context, all above hypotheses are null with respect to the second factor -
transformation type. This is with exception of H7, as following the results in Chapter 4,
the change in transformation type is expected to impact realism judgments.

5.4 Results

This section presents the results of the experiment. The following subsections detail the
results for each one of the dependant variables in the presented study. As an overview,
Figure 5.8 illustrates the distributions of gaze metrics for each of the conditions studied.
Specifically, bootstrapped means along with their 95% confidence intervals are shown for
each combination of gaze metric and experimental group. Additionally, Figure 5.9 shows
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the means and 95% confidence intervals of the difference statistics used when performing
group comparisons, described in Section 5.3.6.

5.4.1 Realism Ratings

Contrary to H7, the factor of prior object knowledge was not found to have a significant
impact on resulting realism ratings. Figure 5.7 shows plots of mean realism responses per
transformation magnitude value, where each mean realism response value is an average
of binomial responses across all images with the same transformation magnitude. Error
bars plot 95% binomial CIs for each realism rating in the experimental group. It can be
seen that the confidence intervals for each measured transformation magnitude overlap
significantly in the case of both transformation features.

Fisher’s exact test indicated that, in the case of each transformation type, prior object
knowledge had no significant impact on group realism ratings (p > 0.05). While such a
direct comparison of realism ratings across transformation type is not possible, due to
the exposure and CCT transformation magnitude scales not being perceptually aligned, a
moderate correlation was observed between conditions EU and CU (r = 0.57, p < 0.05),
as well as EK and CK (r = 0.63, p < 0.05). Stronger correlations were observed between
condition pairs EU and EK (r = 0.91, p < 0.05) and CU and CK (r = 0.81, p < 0.05).

5.4.2 Fixation Counts

Overall, conditions where object identity was known a priori received significantly lower
mean Fc, as indicated by Fisher’s permutation test (p < 0.05). No significant Fc differences
were found between groups affected by exposure and CCT transformations, when the
object was known. When prior object knowledge was not provided, however, significantly
higher mean Fc values were recorded for CCT, compared to exposure transformations.

This suggests that overall, CCT transformations in the range evaluated may have been
more challenging to detect, compared to exposure transformations, necessitating extended
visual search. See Figures 5.8a and 5.9a for an illustration of these statistics and their
respective effect sizes. These results indicate that visual search plays a significant role in

Figure 5.7: Realism responses averaged for feature offset values across image sets for exposure
(left) and CCT (right). Line styles indicate object location conditions. Error bars indicate 95%
binomial confidence intervals.
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(a) (b) (c)

(d) (e) (f)

Figure 5.8: Bootstrapped means/medians and their 95% confidence intervals for the evaluated
metrics for test images under the four experimental groups - exposure, no location (EU); exposure,
location (EK); CCT, no location (CU); CCT, location (CK). From left: fixation counts (Fc),
fixation durations (Fd), time to first fixation on target object (TFFO), duration of first fixation
on target object (DFFO), inter-observer consistency using similarity score (IOCSS)
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(a) (b)

(c) (d)

(e) (f)

Figure 5.9: Bootstrapped comparisons of group mean/median differences for each of the evaluated
metrics.
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visual realism assessment and is likely induced by constrains of the task itself - finding
evidence of transformations, or comparison thereof with other elements of the scene.
The fact that fewer fixations are deployed when prior object knowledge is provided also
indicates that visual search is relied on to identify the object, but likely not relied on
during the realism rating task.

5.4.3 Fixation Durations

The average duration of fixations highlights a similar scenario to Fc, where Fd were
significantly longer for conditions with prior object knowledge. This indicates that when
observers are aware of the identity of the object, they deploy fewer, but longer fixations,
likely due to knowledge of the existence of task-relevant information, confirming H2.

Specifically, for both condition EU and CU Fd were significantly shorter compared to
conditions EK and CK (p < 0.05). Longest Fd were recorded for the CK condition,
being significantly longer than all other groups (p < 0.05). This mirrors the behaviour
observed in the case of Fc for the CU condition being significantly higher than those
for the EU condition. Combined, these findings suggests that a) observers deploy more
fixations searching for CCT transformations, and b) even when explicitly provided with
location information, observers deploy longer fixations to composites affected by CCT
transformations, as compared to exposure. No significant differences were found between
conditions EU and CU . Overall fixation duration only changed significantly as a function
of transformation type for groups where the object was known.

Without prior object knowledge, the average duration of deployed fixations did not
change as a function of transformation type. This shows that without knowledge of the
transformed object, observers deploy overall more fixations of shorter durations, suggesting
dominance of visual search under this experimental condition. See Figures 5.8b and 5.9b
for an illustration of these statistics and effect sizes.

5.4.4 Time to First Fixation on Object

While significantly lower TFFO measures were expected for groups with prior object
knowledge, this was not observed in the results, providing no positive evidence for H3.
No significant TFFO differences were noted between any of the experimental conditions.
Observes required on a median of around 1.7s to attend to the transformed object,
regardless of the type of transformation or prior object knowledge. See Figures 5.8c
and 5.9c for an illustration of these statistics. This suggests that either a) despite
additional task-relevant information, bottom-up VA processes dominate during stimulus
onset focusing attention on salient features of the scene, b) observers’ VA is equally
attracted to the transformed object, regardless of prior knowledge c) observers do not
fixate directly on the target object, but in its vicinity, resulting in overestimated TFFO.
This is further discussed in Section 5.5.
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5.4.5 Duration of First Fixation on Object

Contrary to TFFO, significant differences in DFFO were found between groups. A similar
pattern to that of Fd was followed - DFFO were significantly longer in groups with prior
object knowledge (EK & CK), confirming H4. Furthermore, the DFFO for those groups
was significantly longer than the average Fd for the same group. This was not true for
groups where object location was unknown EU and CU . This shows that when observers
knew the identity of the transformed object, they devoted significantly more attention to
it upon first fixation. See Figures 5.8d and 5.9d for an illustration of these statistics.

Reconciling this finding with the lack of differences in TFFO suggests that while prior
object knowledge and transformation type do not change the speed at which they attract
observer attention, prior object knowledge does tend to induce longer first fixations
and overall longer average fixation durations. This suggests that observers prioritise
the analysis of task-relevant regions, when this information is available to them. In
more natural scenarios, where such additional task-relevant information is not provided,
observers tend to follow a more exploratory pattern, closely resembling visual search, as
indicated by significant differences in fixation counts and durations.

5.4.6 Area of Interest Similarity

The differences in Fc and Fd suggest that some significant differences between attended
regions may exist across experimental conditions. Since observers deploy more fixations
when they are not aware of the identity of the object, they may attend to a larger
proportion of the scene, or make a larger number of comparisons between elements in
the scene. Analysis of AOIS indicates that observers indeed rely primarily on the object
regions when performing the task. A Kruskal-Wallis test showed significant differences
in proportions of fixations falling on foreground objects, between reference and test
conditions, for each group (p < 0.01). Table 5.2 details that even with prior object
knowledge (in conditions EK and CK), the proportion of fixations on the object were
higher in the test image, compared to the reference image.

Pairwise joint fixation map similarity measures across conditions show that changing the
transformation type has a smaller effect on the AOIS, compared to prior object knowledge.
AOIS between conditions EU − CU (M = 0.81, CI = [.78, .82]) and (M = .82, CI =
[.81, .84]) significantly higher, compared to all other conditions (see Fig. 5.10). This
indicates that the similarity of spatial VA distribution is significantly higher for groups
sharing the same setting of the prior object knowledge factor, compared to any other
combination of factors. This also evidences that prior object knowledge has a higher
impact on spatial distribution of VA, compared to the transformed feature type, under
the conditions of this study. For example, the similarity of spatial VA distributions for the
same prior object knowledge setting, but different transformation features is significantly
lower. These findings support H6 that AOIS will be highest for groups sharing object
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Experiment Reference / Test Fobj% σ χ2 p-value

EU Reference 13 8 9.51 0.002Test 26 16

EK Reference 34 13 11.50 0.001Test 45 14

CU Reference 13 8 8.81 0.003Test 24 15

CK Reference 38 14 11.24 0.001Test 50 13

Table 5.2: Results of comparing proportions of fixations on target object (Fobj%) between reference
and test images, under each of the experimental conditions.

Figure 5.10: Test image area of interest similarity score (AOIS) for each pairwise combination of
conditions.

knowledge priors.

Finally, qualitative analysis of attention distributions further illustrates such spatial
strategies adopted by observers. During viewing of reference images without prior object
knowledge (Figs. 5.11a, 5.11c, 5.12a, 5.12c), observers followed a free-viewing visual
strategy, attending most objects in the scene in an exploratory manner. This was
consistent across both transformation features. Conversely, when observers were provided
prior object knowledge (Figs. 5.11e, 5.11g, 5.12e, 5.12g), they focused their attention on
the target object, while devoting less attention to the rest of the scene. During viewing
of test images, observers with prior object knowledge (Figs. 5.11f, 5.11h, 5.12f, 5.12h)
focused largely on the target object, whereas observers with no prior object knowledge
devoted more attention to the rest of the scene (Figs. 5.11b, 5.11d, 5.12b, 5.12d). For
images with transformations of higher magnitudes (e.g. 5.12), observers’ attention is often
focused on the target object, even when no prior object knowledge is provided. This is
understandable, since, as discussed in Chapter 4, distortions of higher magnitude tend
to correlate with more accurate and confident predictions of visual realism. In cases of
lower-magnitude transformations, when no prior object knowledge is available, the visual
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search pattern persists as observers continue to look for evidence of a transformation. This
effect is illustrated when comparing Figures 5.11b and 5.12b.

5.4.7 Inter-Observer Consistency

Overall IOC measures were similar across conditions (see Fig. 5.8e), however, not
enough evidence is present to support H6. Fisher’s permutation test found significant
IOC differences between conditions EK and CK, EK and CU , as well as EU and CK
(p < 0.05) . While, their effect sizes are small, with the largest being between conditions
EK and CK (M = −0.03, CI = [−.04,−.01]), there is indication that observers were more
spatially consistent with the rest of their group when assessing CCT transformations with
prior object knowledge. This interpretation is in agreement with the long Fd identified for
the same condition (CK). One explanation for this difference in IOC is that this additional
task-relevant information reduces the within-group variance of spatial VA distributions.
However, this explanation does not fit the corresponding IOC values for conditions EK
and EU . Here, the group with prior object knowledge obtained a lower IOC score,
compared to the group without this knowledge. See Figure 5.9e for illustration of this.
While this result does not conflict with prior findings in this study, further research is
required to understand the source of these significant differences.

5.4.8 Response Time

Due to the time constraint applied to the task, RT s can provide a good proxy for the
relative cognitive load and difficulty of the tasks performed by each group. Figure 5.8f
shows boostrapped mean RT s and their 95% confidence intervals. It can be seen that for
each transformation feature, mean RT s were significantly lower when object location was
known. Prior object knowledge reduced mean RT by ~1 second. However, significant RT
differences were also found between the transformation feature conditions. Specifically,
with no prior object knowledge, observers took on average 1.15s (CI = [0.85, 1.57]) longer
to provide a response for CCT transformations, compared to exposure transformations.
When object knowledge was provided, this difference dropped to 0.77s (CI = [0.51, 1.13]).
RT s for CCT transformations under each location condition were significantly higher
compared to those for exposure transformations (see Fig.5.9f). This provides further
evidence that CCT was overall the more challenging feature, compared to exposure, as
well as showing that prior object knowledge makes the task significantly easier to perform,
for both CCT and exposure. Perhaps the most interesting aspect of this finding is its
relationship with realism responses, particularly when varying the prior object knowledge
factor. Gaze metrics indicate that without prior object knowledge, the task was likely more
challenging than when this knowledge was present, for both exposure and CCT. However,
comparing group realism ratings across the prior object knowledge condition did not reveal
any significant differences. This suggests that, while gaze metrics, response times and
accordingly visual strategy may be influenced by prior knowledge and deployment of VA,
the resulting realism ratings do not change significantly. This and other findings are
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(a) EU reference (b) EU test

(c) CU reference (d) CU test

(e) EK reference (f) EK test

(g) CK reference (h) CK test

Figure 5.11: Comparison of joint fixation maps over reference and test stimuli, for each combination
of factors. Test images contain the smallest positive transformation magnitude used in our
experiments (+40 mired for CCT and +0.33 stops for exposure). The small transformation
magnitude leads to visual search patterns in both reference and test images for conditions with no
prior object knowledge (EU & CU), and increased visual effort in conditions EK and CK.
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(a) EU reference (b) EU test

(c) CU reference (d) CU test

(e) EK reference (f) EK test

(g) CK reference (h) CK test

Figure 5.12: Comparison of joint fixation maps over reference and test stimuli, for each
combination of factors. Test images contain the largest positive transformation magnitude used
in our experiments (+200 mired for CCT and +1.66 stops for exposure). The large magnitude
transformation attracts more fixations to the object, even with no prior object knowledge.
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summarised and discussed in the following section.

5.5 Discussion

This section discusses the key findings of the study presented in this chapter and draws
relationships with related work in the area, as well as the study from Chapter 4.

5.5.1 Summary of findings

Key findings from the presented experiments are summarised below, and discussed in
depth in the following sections.

• prior object knowledge has no significant impact on subjective realism ratings

• task-relevant knowledge does have a significant impact on deployment of VA

• observer strategy can be described as a combination of visual search and
discrimination

• visual search is performed to identify the object, but does not impact its realism
rating

• when assessing realism, observers rely significantly on the target object, this
behaviour is emphasised when the target object is known a priori.

• first fixations are significantly longer when the target object is known

• prior knowledge results in increased similarity of attention maps and shorter task
completion time

• prior knowledge has a significantly higher impact on allocation of VA, compared to
varying the transformed feature.

5.5.2 Prior Knowledge, VA and Realism

Chapter 4 posed several questions regarding the impact of VA on composite realism
assessment and the resulting perceptual models. Chief among these was the impact of prior
object knowledge on VA distribution and, consequently, on subjective realism ratings. The
results presented here indicate that for the evaluated conditions, prior object knowledge
did not have a significant impact on realism ratings. While significant differences in both
temporal and spatial VA distribution were found between groups, realism ratings remained
unchanged.

The changes in VA induced by the presence of prior knowledge, such as relatively large
fixation counts and short fixation durations, can be explained primarily by the existence
of a visual task, which results in VA patterns unlike those of free-viewing (Ninassi et al.,
2006). Furthermore, the presence of a target (i.e. the prior object knowledge factor)
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imposes even more significant top-down VA cues, essentially directing observer attention
to the target object (Yarbus, 1967). The insignificant impact of prior knowledge and
resulting changes in VA on realism ratings is more challenging to explain.

One explanation may be that transformations rendering a composite unrealistic are visible
to observers, regardless of where their attention is initially directed, while low magnitude
transformations, which do not result in unrealistic appearance of objects, may not be
detected reliably, regardless of allocation of VA. It is possible to imagine that in borderline
scenarios, where the transformation is very close to 1JND, VA may have a more significant
effect. However, for the images used in this study and the magnitudes of transformations
evaluated, the impact of VA on realism ratings is negligible.

Another explanation is the potential impact of local transformations, or distortions, on
saliency (Wang et al., 2014). For example, Leveque, Zhang and Liu (2019) showed that the
saliency map of a distorted version of an image is different to that of an undistorted version
of the same image. This explanation also helps explain the lack of variation in TFFO

between groups with and without prior object knowledge in the presented experiment. If
transformations applied to objects indeed affect saliency, then observer attention could be
attracted to the target object before top-down task-related VA takes over. This would
also explain the significantly longer DFFO measures for conditions with prior object
knowledge: observers remain fixated on the object for longer, as they know it is the target.
In the scenario where prior object knowledge is not provided, the object attracts initial
bottom-up attention, but task constraints override this initial deployment of attention.
These findings are in line with previous research. For example, Le Meur et al. (2010)
measured overt attention of observers, both free-viewing and assessing video sequences in
terms of quality. They found that while the task does influence visual attention allocation,
low-level image features still play a crucial role in guiding attention, both under free-
viewing and task-driven conditions.

5.5.3 Observer Strategy

The results of this study show that observers perform at least two distinct visual tasks:
serial visual search, attending to individual objects in the scene, and more selective visual
discrimination, once the target object is identified. As illustrated by the presented results,
observers with prior knowledge of the object spent less time performing visual search and
more time processing the target object, but this task dichotomy exists even when the
target object is not known a priori.

Based on the feature integration theory (Treisman and Gelade, 1980), discussed earlier in
this chapter, two types of visual search are performed by human observers - feature search
and conjunction search. The former is based on a comparison of a single feature and is thus
fast and pre-attentive, the latter relies on assessment of multiple features, is a serial process
and requires allocation of overt attention. The relative involvement of these two types of
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search in the context of image composite realism assessment is largely dependent on the
type and magnitude of the transformation. It is not difficult to imagine an object with a
drastically different appearance from its background ‘popping out’ and instantly attracting
attention. Equally, one can imagine a realistic composite, where considerable effort would
have to be devoted to detect inconsistencies. Thus, it is possible that depending on the
severity of the transformation, or more generally, visual mismatch between the object and
scene, both visual search mechanisms may be relied on.

This would provide further support to the findings discussed above, particularly the lack of
significant TFFO differences between groups. It is logical to suggest that transformations
of large magnitudes diminish the usefulness of prior object knowledge, by making the
target object obvious, resulting in reduced differences between gaze metrics. On the other
hand, transformations of lower magnitudes may still attract early attention by inducing
changes to the saliency map, but require additional conscious effort and comparison with
other elements of the scene, before a confident response can be given. This interpretation
is also supported by the increased DFFO for conditions where object location was known.

Overall, it appears that by adopting a combination of visual search and selective longer
fixations on potential targets, observers accumulate relevant visual information, based
on which a final realism judgement is made. Additional attention cues, either top-down
(such as prior object knowledge) or bottom-up (such as significant, attention-grabbing
distortions) can accelerate this process, by reducing the contribution of visual search and
overall task times.

5.5.4 Object & Scene

Based on overt VA patters, observers seem to extract a significant amount of task-relevant
information from the object and its immediate surroundings. As mentioned above, the
proportion of fixations on the target object versus the rest of the scene was higher both
when prior object knowledge was provided, as well as when transformations were easily
noticeable (as seen in the qualitative analysis). This is also consistent with the findings
of Redi et al. (2011), who showed that observer VA patterns deviate away from free-
viewing patterns proportionally to the subjective quality level. As the subjective quality
decreases, fixation patterns tend to deviate further from free-viewing, likely affected by
changes to the saliency map. Similarly to the work presented here, they found that the
distortion type has much less effect on fixation distributions, compared to the associated
quality score. The interplay of scene content, attention and subjective ratings has also
been investigated by Liu and Heynderickx (2011), who evaluated the impact of saliency-
based weighting of objective quality scores. They found that the gain in quality prediction
afforded by incorporation of saliency maps was variable as a function of image content.
While further work is required to investigate the impact of scene content in detail, some
trends can be gleaned from the study presented here. For example, scenes with many
objects and low transformation magnitudes are likely to receive higher realism scores. This
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is because the larger number of objects requiring attention under the same time constraints
would likely result in shorter fixation durations, which, in turn, could lead to certain
distortions remaining unnoticed and affecting the realism score positively. However, when
the distortion magnitude is high, observers tend to focus their attention on the affected
region.

5.5.5 Correlates of Visual Effort

Analysis of gaze metrics also reveals some information about visual effort and
task difficulty. In the case CCT transformations, observers response times and
fixation durations were consistently longer than for exposure transformations, when
object information was revealed. This suggests that even when the target object
was unambiguous, observers allocated more visual effort to rating realism of CCT
transformations. This is likely related to the stimulus ranges selected for both features
being unaligned. While the most extreme exposure and CCT offsets received comparable
realism ratings (see 5.7), the responses for intermediate stimulus values deviate more
between transformation features. In post-test conversations, particularly for condition,
CU observers reported difficulty in spotting the transformations and assessing whether
they were realistic, given the reference image. This is confirmed by the significantly
higher fixation counts for that condition, indicating visual search patterns. Scene content
is likely to also contribute to this effect - depending on the appearance of the object and its
immediate surroundings, an exposure shift applied to that object may be more perceptible
compared to a CCT shift. Redi et al. (2011) suggest that high magnitude distortions may
simply require much less subjective inspection before arriving at a confident decision.
This statement is reinforced by the significant fixation count, duration and response
time differences between conditions. While mean fixation counts and durations between
exposure and CCT transformations are not significantly different when prior object
knowledge is provided, the differences becomes significant when prior object knowledge
is not provided. Despite the existence of such significant differences in gaze metrics and
response times, realism ratings are not affected. This suggests that given sufficient task
time, observers are likely to arrive at the same realism judgements, provided they are able
to detect the task-relevant signal (a suprathreshold transformation).

5.6 Conclusions

This chapter has investigated the deployment of visual attention during subjective
realism rating tasks in the context of local transformations approximating common image
composite distortions. To achieve this, eye movement, task performance metrics and
subjective realism ratings were collected for observers performing a subjective realism
assessment task. The task required observers to provide a binary realism rating for
images affected by local transformations. It measured the impact of two factors: prior
object knowledge and local transformation type on the resulting realism ratings and eye
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movement metrics.

The findings of this study indicate that when rating the realism of images affected by local
exposure and CCT transformations, observers rely heavily on the features of the object
affected by the transformation and its immediate surroundings. Despite the importance
of this area to the task, its explicit prior indication does not have a significant effect on
the resulting realism ratings. It does, however, impact response times and fixation metrics
associated with visual effort, task-relevance and observer confidence. While realism ratings
across both transformation features were moderately correlated, there is indication that,
in the stimulus ranges under evaluation, CCT transformations required more visual effort
for observers to detect and assess, compared to exposure transformations. Despite the
fact that some of these differences (e.g. fixation counts) diminish when the target object
is made explicit to observers, significant differences in response times persist, suggesting
that a simple distortion-magnitude-based model may not generalise well across multiple
local transformation or distortion types and different scenes. Due to a visual-search-based
strategy being deployed in the context of low-magnitude transformations, realism ratings
may be positively-biased for visually busy scenes, containing many objects for observers
to visually compare and contrast, given a time constraint.

Given the negligible impact of prior knowledge and VA deployment on realism ratings,
the realism rating for an image affected by a local composite-like transformation seems to
largely be a function of inter-observer variability, scene content and visible object-scene
appearance differences. As indicated in Chapter 4, the visibility of such differences can
be modelled based on type and magnitude of the transformation (or distortion), leading
to the conclusion that for a given scene, distortion type and magnitude, realism can be
modelled in terms of group JNDs for that combination of object, scene and distortion.

Chapter 6 will investigate whether the findings from Chapters 4 and 5 can be generalised
into a perceptual model capable of approximating human sensitivity in detecting local
transformations in images.
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Chapter 6

Modelling Image-Wise Observer
Sensitivity

This work was published in:
Dolhasz, A., Harvey, C. and Williams, I., 2020. Learning to Observe: Approximating
Human Perceptual Thresholds for Detection of Suprathreshold Image Transformations.
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
pp.4797–4807

6.1 Introduction

Chapters 4 and 5 have illustrated how subjective realism can be modelled as a function
of just-noticeable distortions (represented by local transformations), and which visual
information observers rely on in order to produce those subjective realism judgments.
While the presented studies provide insight into observer sensitivity and strategy, they
rely on relative transformations to create composite-like distortions from real photographs.
In order to apply the JND model from Chapter 4 to a real composite image, the
transformation magnitude must be known. This requires access to the ideal appearance
(the original version of the image in our experiments). Clearly, this is infeasible to acquire
in the case of a real composite image. Thus, in order to make the proposed models
applicable and generalisable to real composites, they must not rely on knowing the ideal
appearance of the composite a priori.

Accordingly, this chapter revisits and adapts the JND models from Chapter 4, based
on findings from Chapter 5. Through modelling group JND for individual images, as a
function of local transformation magnitude, the impact of scene content and underlying
object appearance is encoded directly in the JNDs. This then allows the representation
of the group realism rating process as a nonlinear function of the input image content,
object appearance and local transformation type and magnitude. This nonlinear function
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can then be approximated using convolutional neural networks, in order to generalise
performance to new, unseen images. This model is then evaluated with respect to empirical
JNDs and applied to real image composites. This approach to modelling detection of image
composite regions requiring harmonisation also relaxes the requirements for input masks.
This allows to address the limitations of existing methods, discussed in Section 3.5, by
replacing the input mask with one that can be detected during inference, using the model
developed in this chapter. This, combined with state-of-the-art harmonisation techniques,
allows for new applications for image content for which input masks are not available,
such as legacy photographs and films. Commonly, such content would otherwise require
human intervention to manually create these masks.

6.2 Related Work

6.2.1 Learning-based Human Perception Models

Many complex visual tasks, such as object detection or face recognition, are performed
effortlessly by humans, but have long been difficult problems in computer vision.
Depending on perspective, illumination and scene context, the projection of a given three-
dimensional object onto a two-dimensional retina (or camera sensor) can take on a range of
different appearances. Likewise, a given 2-D retinal projection can be the result of infinitely
many arrangements of 3-D objects in the original scene. This in turn makes such problems
near impossible to solve using formal, rule-based methods, because of the sheer number
of rules that would have to be designed. In addition to this, collection of perceptual data
is commonly a costly and time-consuming process, as it relies on use of human observers.
Generalisable perceptual models thus have the capacity to remove the requirement for
humans in the loop, making them attractive, both for practical applications as well as
research into human perception.

In recent years, the rapid development of machine learning has contributed to solving
many such problems by approximating the function mapping input stimuli (e.g. images),
or certain features thereof, to corresponding labels (e.g. object classes), based on exemplar
data. In computer vision and image processing, much of this progress has been achieved
using deep convolutional neural networks (see Section 3.3.5 for a review). The advantage of
learning-based methods in this context is that they allow modelling of complex processes
using exemplar data, without the need for explicit programming. For example, Bosse
et al. (2017) trained CNNs to perform both full-reference and no-reference image quality
analysis, based on datasets of images and associated human opinions (Sheikh et al., 2005;
Ponomarenko et al., 2013). Talebi and Milanfar (2018) extend this approach, by mapping
images to distributions of opinion scores, in order to account for subjective variabilities.
Similar approaches have been applied to other subjective qualities, such as image aesthetics
(Kong et al., 2016; Ma, Liu and Wen Chen, 2017) or perceptual image similarity (Zhang
et al., 2018b). Provided that a large dataset of training data and associated labels exist,
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Figure 6.1: Illustration of just-noticeable differences for negative (t−) and positive (t+) local
exposure transformations as a function of exposure shift. Exposure shifts of magnitudes between
t− and t+ are perceptually subtreshold, while magnitudes outside that range are perceptually
suprathreshold. These three ranges are used to define the class boundaries in terms of local
transformation magnitude.

DNNs perform very well at approximating the functions mapping the data to labels.

While supervised deep learning algorithms can achieve high accuracy when learning to
map images to subjective opinion scores, they require large amounts of labelled training
data. As discussed in previous chapters, the collection of subjective perceptual data under
well-controlled conditions is a time- and effort-consuming process. Many approaches have
been proposed to tackle the problem of small datasets, including data augmentation (Perez
and Wang, 2017), transfer learning (Pan and Yang, 2009) and semi-supervised methods
(Zhu, 2005).

6.2.2 Unsupervised, Self-supervised & Transfer Learning

As discussed in Section 3.2.4, unsupervised learning algorithms relax the requirement
for labelled training data. In the context of images, their common applications include
representation learning, the goal of which is to encode images into compact feature
representations useful for related tasks. This has been used extensively in image
synthesis methods, for example, to drive a generative adversarial network (Radford, Metz
and Chintala, 2015), or to improve classification performance in mammography images
(Arevalo et al., 2016). Self-supervised approaches have recently proven practical for this
task. In self-supervised learning, the training process follows a conventional supervised
paradigm, however the training data is generated and/or labelled automatically. In
the case of images, this commonly involves applying some known transformation to the
training data and training the network to predict this transformation, or encode the same
features despite the transformation. For example, Noroozi and Favaro (2016) generate
jigsaw puzzles from images and learn good representation through solving these, Doersch,
Gupta and Efros (2015) predict context from a set of candidates, whereas Gidaris, Singh
and Komodakis (2018) predict image rotations.
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These methods exploit the assumption that a compact visual feature representation trained
to counteract or predict certain input data transformations on a large enough dataset
of unlabelled images is likely to perform well at related visual tasks, such as image
classification, or captioning. This is also the conceptual foundation for transfer learning,
where a model trained for a particular task on a large dataset is re-trained for a related
task, on a different dataset (Pan and Yang, 2009; Weiss, Khoshgoftaar and Wang, 2016).
Transfer learning thus exploits a key property of hierarchical feature representations:
while high-level features are specific and vary significantly between various tasks, low-level
features are more general and tend to be similar across tasks. In practice, transfer learning
often involves freezing of the weights of lower-level layers of a pre-trained model and fine-
tuning only the last few layers. This way the general low-level features are preserved, while
the high level features are adapted to the domain of the new task. It has also been shown
that the activations of DNNs trained on object recognition tasks correlate with inferior
temporal cortex spiking responses to natural images (Yamins et al., 2014), suggesting that
models trained on visual tasks, tend to respond to similar features as the neurons in the
visual cortex.

6.2.3 Semi-supervised Learning

Semi-supervised learning, combines the advantages of both supervised and unsupervised
learning. This is commonly accomplished by learning a representation in an unsupervised
manner and training a supervised model using the learned representation and a small
dataset of labelled examples. Semi-supervised methods which impose further constraints
on the number of labelled training samples are commonly referred to as few-shot learning
(Sung et al., 2018), one-shot learning (Vinyals et al., 2016) or zero-shot learning (Socher
et al., 2013), depending on the number of labelled training samples presented to the model
during training. These methods commonly rely on first learning a good task-relevant
representation of input data, followed by performing an association between a particular
region of the representation feature space with a particular class label (Snell, Swersky and
Zemel, 2017).

6.2.4 Invariance & Equivariance

Depending on the task at hand, the learned representation should be invariant to certain
aspects of the input, while being equivariant to other properties. For example, an image
classification CNN should be approximately translation invariant - regardless of the spatial
position of a cat in an input image, the CNN’s output should always indicate a cat. This
is in spite of the fact that the building block of a CNN – the convolution operation
– is a translation equivariant operation, in that the translation of the input results in
an equal translation of the output. CNNs for image classification achieve translational
invariance through the use of max pooling layers (Boureau, Ponce and LeCun, 2010).
However, invariance to other properties of the input is not always developed through
architectural modifications. Data augmentation is a common approach to introducing
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invariance to certain input properties during training of the model. For example, in order
to make an image classifier invariant to the rotation of the input, it is common to generate
multiple variants of input samples at random orientations, but with the same training
labels (Schmidt and Roth, 2012).

The properties of invariance and equivariance to certain transformations of the input
are not universally desired in every application. As opposed to image classification, in
semantic segmentation, the neural network should be equivariant to translations of the
input, since the output class map must align with the locations of the semantic regions
in the input image (Long, Shelhamer and Darrell, 2015). Analogously, a network tasked
with predicting a subjective response given some transformation an input image, should
be equivariant to that input transformation.

6.2.5 Transformation Equivariant Representations

In addition to the architecture- and augmentation-based approaches, several generalised
approaches to transformation-equivariant representations (TERs) learning (Hinton,
Krizhevsky and Wang, 2011) have been proposed. Specifically, Zhang et al. (2019); Qi
et al. (2019) show that for image-to-image problems, robust transformation-equivariant
representations (TERs) can be learned by auto-encoding transformation parameters, as
opposed to auto-encoding data augmented by input transformations. They show that
representations equivariant to both parametric and non-parametric transformations can
be learned using conventional convolutional autoencoders with minor changes to the
training protocol. Specifically, they use a Siamese architecture (Bromley et al., 1994;
Chopra, Hadsell and LeCun, 2005) consisting of a convolutional encoder. This is then
trained to regress the parameters θ̂ of a projective transformation T (θ) ∈ R3×3 between
an input image I and the transformed image Î = T (I; θ). Since the parameters of the
transformation are generated at run-time, they can be used as dynamic ground truth
labels, making the process self-supervised. Aside from its generalisability, the authors
demonstrate superior results on auxiliary tasks, such as image classification, compared to
alternative methods.

As illustrated in Chapter 4, many distortions present in image composites can be modelled
in a controlled manner by applying local transformations to real images. Similarly, Chapter
2 discussed how compositing artists commonly improve the realism of image composites
through manual application of local transformations. Accordingly, feature representations
of images used in computational models of realism should be equivariant with respect to
such transformations. This, in turn, allows for subsequent perceptual weighting of such
a feature space to align with human perceptual thresholds. In other words, for a model
to reliably detect unrealistic image composites, it must be capable of first encoding the
presence and magnitude of such transformations. However, no previous work has leveraged
this observation for modelling of subjective image properties.
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Accordingly, this chapter develops a methodology to learn representations equivariant to
local transformations, by adopting the paradigm of autoencoding transformations (Zhang
et al., 2019). By leveraging DCNN-based techniques and synthetic data generation, these
TERs can be learned in a self-supervised manner for a large dataset of images. This TER
can then be leveraged to learn a mapping between image composites and corresponding
image-wise JNDs.

6.3 Method

6.3.1 Overview

This section details the methodology for learning a mapping between input images affected
by local exposure transformations and perceptually-based transformation maps, indicating
the pixel-wise probability of the existence of suprathreshold local image transformations.
Building on the methodology and findings from Chapters 4 and 5, detection of local
image transformations is modelled as a pixel-wise classification problem, where each pixel
of the input image is assigned one of three labels: negative suprathreshold, positive
suprathreshold and subthreshold. These categories are based on image-wise perceptual
thresholds, which define the decision boundaries of the model (as illustrated in Figure
6.1). By estimating psychometric functions and JNDs in an image-wise fashion, the
impact of the object, scene and transformation type are encoded in the subjective response.
This in turn allows the model to learn the impact of image content and local context on
observer sensitivity to local image transformations in a supervised manner. Unsupervised
pre-training and transfer learning techniques are also adopted in order to maximise
generalisability of the proposed model, given the limited size of the training dataset.

The following sections describe the rationale behind the proposed approach and adopted
methodology, including an overview of the 2AFC study and resulting psychometric
functions, formulation and generation of training data based on the perceptual models,
neural network architecture design, optimization details and techniques adopted to
optimise performance.

6.3.2 Distortions as Transformations

Chapter 4 illustrated that many distortions affecting image quality, or realism, can be
seen as transformations applied to the original, uncorrupted image as a side effect of some
processes such as transmission, compositing, or compression. If the magnitude of this
transformation is known, the corresponding JND model can be used to predict subjective
realism ratings. However, without access to an ideal reference image, estimation of the
magnitude of a local transformation is non-trivial, as its appearance is conditioned on
the underlying image pixels. As discussed previously, DL-based approaches are a good
fit for such problems, however, any representation mapping images affected by local
transformations IT = T (I; θ) to a point on a perceptual scale, must be equivariant to
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the transformation of interest present in the input data, such that:

φ(T (I)) = T (φ(I)) (6.1)

where I is an input image, T is a local image transformation T : I 7→ I, and φ is a function
mapping from input images to a feature representation. In other words, in order for the
learned representation to be equivariant to local transformation of the input, the learned
representation should be able to encode the effects of this transformation.

Perceptually suprathreshold transformations constitute a subset of a family of local image
transformations, for example local exposure shifts,

T = {Tθ | θ ∼ Θ}

parametrised by θ sampled from a distribution Θ, conditioned for a specific observer and
object-scene combination. As such, detection of such transformations can be modelled in
a two-stage fashion:

1. mapping of images to points in TER feature space

2. classification of points in this feature space as sub- or suprathreshold

This formulation of the problem highlights the independent nature of the representation
learning task, which can be addressed using unsupervised learning methods, from the
perceptually-based classification task, for which training data is limited and costly to
acquire.

6.3.3 Perceptual Thresholds as Decision Boundaries

In the context of image distortions, and assuming controlled viewing conditions, the
sensitivity of a given observer to different magnitudes of a local transformation can be
modelled using a psychometric function, as in Eq. 4.9. This function can be seen as the
result of an observer process operating on a range of input data. Given an unprocessed
image I, object maskM , observer function O and Ĩx a corrupted version of I resulting from
a local transformation T (I,M, x), the empirical psychometric function can be interpreted
as a result of applying the observer function to Ĩ for all values of x. The observer function
O thus represents the perceptual process performed by an observer (or group of observers),
which maps an input stimulus Ĩx to a point on the psychometric function.

Ψ(x) = O
(
T (I,M, x)

)
(6.2)

where the observer function can also be interpreted as a combination of a nonlinear
function ω mapping images to a TER, and another function ρ mapping these features
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to a probability:

O(I) = ρ(φ(I)) (6.3)

.

Accordingly, detection of local suprathreshold transformations in an image can be defined
as applying the observer model to classify each pixel based on the existence of the effects of
a suprathreshold transformation. Under this arrangement, the decision boundaries of the
classifier ρ are conditioned to approximate the thresholds xt− and xt+ of a psychometric
function Ψ, estimated with respect to the magnitude x of transformation T applied to an
image region in I defined by maskM . This results in 3 classes c, defined by the parameter
of the transformation generating the input stimulus:

c =


0, if x < xt−

1, if x > xt+

2, otherwise

(6.4)

Here, xt is the value of the transformation parameter for which the probability of detection
exceeds threshold t, set to 0.75, corresponding to the JND in 2AFC tasks. This is
the midpoint between perfect (100%) and chance (50% for 2AFC task) performance
Wichmann and Hill (2001b). As two psychometric functions are estimated per image,
one corresponding to decreasing the pixel intensity (xt−) and one for increasing it (xt+),
their two thresholds separate the parameter space x into three regions (Fig. 6.2d).

6.3.4 Psychometric Function Estimation

To estimate image-wise empirical psychometric functions with respect to a local exposure
transformations, a 2AFC study is designed, following and extending the methodology
described in Chapter 4. Specifically, for each image, the performance of observers
completing an image discrimination task is measured. The task involves correct
discrimination between an original version of the image I, and a transformed version
Ĩx, affected by a local exposure transformation, where x specifies the magnitude of
the transformation. This is performed for a range of transformation magnitudes, for
each image, across multiple observers. The original (I) and transformed (Ĩ) images
are displayed side by side in random order, and observers are requested to identify I

correctly. Finally, Weibull psychometric functions are fit to each observer’s responses for
each image. To extract the thresholds, the parameter values xt− and xt+ corresponding
to a performance level of yt for negative and positive exposure shifts, respectively, are
estimated. Mean thresholds are then bootstrapped across all observers who viewed the
same image. This process is discussed in detail in the following sections.
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Figure 6.2: Illustration of the 2AFC procedure used in the experiments. a) For a given image I and
object mask M we generate images Ĩ with different exposure offsets based on the sampled value
of x. b) Example stimulus displayed to an observer. c) Observer correctly identifies I and Ĩ for
x = 0.8. d) Observer response added to their previous responses for different sampled values of x.
Symbols xt− and xt−, illustrated with orange dashed lines, indicate the location of the threshold
after performing psychometric function fitting.
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Observers

A total of N=120 (44 females) naive observers, with a mean age of 31 (SD = 11.85), are
recruited from a population of University staff and students and were randomly assigned
to 20 groups. Of the 120 observers, 50 declare themselves as laypersons with respect to
digital image assessment, while the remaining 70 report relevant experience in graphic
design, computer games or digital image processing. All observers are screened for normal
visual acuity and colour vision before participating in the experiment (Zeiss, 2014).

Experiment Design

All experiments are performed under controlled laboratory conditions, following the ITU
BT-500 recommendation ITU-R BT (2002). We use an Apple Cinema HD 23" monitor,
calibrated to sRGB colorspace using an X-Rite i1Display Pro display calibration device.
Observers are positioned 65cm away from the display. To mitigate the confounding impact
of visual search on the task, particularly when differences between the images are minimal,
we explicitly indicate the transformed region in the image by displaying the binary mask
corresponding to the object, following the strategy from Chapter 4. To minimize the
number of experimental trials, we leverage the QUEST adaptive sampling procedure
(Watson and Pelli, 1983), using the implementation from the PsychoPy 2 library (Peirce
et al., 2019).

Stimuli & Experimental Procedure

The stimuli dataset consists of 300 8-bit images with corresponding object masks. These
include the 165 images used in Chapters 4 and 5, as well as an additional 135 images
sampled from the LabelMe (Russell et al., 2008) and SUN (Xiao et al., 2010) datasets
using the same strategy adopted in Chapter 4. In order to minimise the duration of the
experiment for any single participant, the dataset was split into 20 batches of 15 images.
These images are then evenly and randomly distributed across 20 groups of 6 observers.
Each group views 15 unique images from the dataset. In the experimental session, each
observer performs repeated 2AFC trials for each of the 15 base images in their allocated
image sample, viewing at least 20 different variations of each base image. Observers first
complete 20 trials using a calibrating image, results for which are discarded.

In each trial, observers are shown 2 images: the original image I and a transformed version
of the original image Ĩx, the result of exposure transformation T (I,M, x) of magnitude
x. A segmentation mask M is also displayed indicating the target object. These images
are displayed at the same time and remain on-screen for 5 seconds. The order of I and
Ĩ is randomized every trial. Observers are instructed to correctly indicate I by clicking a
corresponding button. After each response, a new value of x is sampled by the QUEST
procedure (Watson and Pelli, 1983), and the process is repeated.
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Perceptual Threshold Estimation

Binary responses y with corresponding stimulus intensities x are collected for each
observer-image combination. The PsychoPy library Peirce et al. (2019) is then used to fit
two Weibull cumulative distribution functions to each set of responses, one for negative
and one for positive exposure shifts. This function is given by

y = 1− (1− γ)e−( kx
t

)β (6.5)

and

k = −log
(1− α

1− γ

) 1
β (6.6)

where x is the stimulus intensity, y is the proportion of correct responses, γ is the
performance level expected at chance, equal to 0.5 for 2AFC tasks, α is the performance
level defining the threshold (set to 0.75, corresponding to the JND for 2AFC), β is the slope
of the function and t is the threshold. The threshold values are pooled across observers
for each image and bootstrap resampling is used to estimate mean image thresholds, using
1000 bootstrap samples. Two generalized perceptual thresholds, xt− and xt+, are thus
estimated for each image in the dataset.

6.3.5 Transformation Equivariant Representation Learning

Many CNN models commonly used as a starting point for transfer learning, such as image
classifiers trained on ImageNet, are conditioned to be invariant to changes in appearance-
based object properties, such as brightness, illumination or colour. While this is a desired
property for object classifiers, the task of local exposure transformation detection explicitly
leverages such appearance-based features to assign classes to output pixels. Thus, transfer
learning using a representation trained on an image classification task, and thus invariant
to the transformation of interest, is likely to produce suboptimal results.

To address this, a task-specific TER is first learned in an unsupervised manner, adopting
the auto-encoding transformations (AET) approach of Zhang et al. (2019), who encode a
TER by learning to predict transformation parameters that describe a transformation
between two inputs. Using this approach, a representation invariant to a particular
transformation type - local exposure shifts - can be trained.

AET: Network Architecture

In order to design a NN architecture capable of learning a representation equivariant to
local exposure transformations, the AET method described by Zhang et al. (2019) is first
extended from prediction of global transformations to prediction of local transformations.
This is achieved by changing the dimensions of the output of the network from a 3 × 3
projection matrix, to anH×W matrix, where each entry describes the predicted magnitude
of a local exposure transformation between the two input images. Furthermore, the shallow
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Figure 6.3: The architecture of the VGG16-based convolutional autoencoder used in the TER and
perceptual threshold learning task. The network is based on a FCN adaptation of the VGG16. See
Section 6.3.5 for a detailed description of the architecture.

encoder proposed by the authors is replaced by a VGG16 architecture, initialised with
ImageNet weights. In order to adapt the model to an image-to-image task, the VGG16 is
converted to a fully convolutional network, following Long, Shelhamer and Darrell (2015)
and the success of their method in semantic segmentation tasks. Due to the importance of
contextual and multiscale information, a multiscale extension is incorporated, as proposed
in Li and Yu (2018). This introduces skip connections to the model, taking outputs after
each max pooling layer in the VGG16 backbone and passing each through an additional
convolutional branch before concatenating the output of all branches. Each branch consists
of 3 convolutional blocks. The first block contains a 3×3, 128-channel convolutional layer
with a stride setting dependent on the scale of the input. This is 4, 2, 1, 1 respectively
for inputs from the first 4 max pooling layers, causing all multiscale branches to output
feature maps of equal resolution. Each of these layers is followed by a batch normalisation
layer and a ReLU activation. The following two blocks contain 1× 1 convolutional layers
with a stride of 1, with 128 and 3 channels, respectively. They are each followed by batch
normalization and a ReLU activation. To output masks of equal resolution to the input
images, a convolutional decoder is attached to the output of the multiscale concatenation
layer. It consists of 3 blocks, each block containing a 2× upsampling layer, followed by
two sets of convolution, batch normalization, and ReLU layers. The first convolution in
the block uses 3 × 3 kernels, while the second uses 1 × 1 kernels. See Figure 6.3 for a
detailed overview.

Using this architecture, the AET model is designed by sharing the weights of the network
between two image inputs, I and Ĩx (Fig. 6.4). Activations for both inputs are then
concatenated and fed to a final convolutional layer. As the transformation can be expressed
by a single scalar the final layer of our AET is a 3 × 3 convolutional layer with a linear
activation, which outputs masks with resolution equal to the input image, with a single
value expressing the predicted exposure shift for each pixel. This way, the model can be
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Figure 6.4: Unsupervised AET architecture consisting of a VGG16-based convolutional
autoencoder with weights shared across two inputs. Activations for both inputs are then
concatenated and fed to a final convolutional layer with a single channel output. The output
masks encode the parameter of the transformation for each pixel.

trained to approximate pixel-wise transformations applied to an input image.

AET: Training Data Generation

To train the AET in an unsupervised manner, training data are dynamically generated
at runtime. Specifically, input images I are used to generate transformed images Ĩ and
corresponding output masks Y = xM , which encode the parameter of the transformation
applied to the input. Ĩ contains an exposure shift applied within the region defined by M .
Each pixel in Y contains the value of the exposure shift x applied to the corresponding pixel
in Ĩ. This is x wherever M = 1 and 0 elsewhere (Fig. 6.4). During training, images I and
corresponding masks M are dynamically sampled from the MSCOCO dataset Lin et al.
(2014). As some images in MSCOCO contain multiple masks, one is randomly selected,
provided its area is larger than 1% of the image, while the other masks are ignored. Local
exposure shifts are then applied by sampling the transformation parameter x and scaling
the luminance channel of I after conversion to Lab colourspace:

ĨL = 2xIL �M + IL � (1−M) (6.7)

where x is a scalar sampled from a base-2 log-uniform distribution spanning (log2(0.1),
log2(10)), IL is the luminance channel of the original image I after conversion from RGB

to Lab colourspace, M is the alpha mask and � is the Hadamard product. The pixel
values of the processed image are clipped to the range (0.0, 1.0), converted back to RGB,
rescaled to 0.0 mean and unit variance. After resizing to (224, 224, 3), both I and Ĩ are
fed to the two inputs of the AET (as in Fig. 6.4). The output of the network is a mask Ŷ
approximating the parameter of the transformation at each pixel of the input image.
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AET: Objective & Optimizer Details

The AET model is trained using the Adam optimizer (Kingma and Ba, 2014). Default
values are used for all parameters, aside from the learning rate, which is controlled using
a cosine annealing schedule (Loshchilov and Hutter, 2016). The minimum and maximum
learning rate in the annealing schedule are set to 1e−6 and 1e−4, respectively. The learning
rate cycles between these values over 5 epochs, after which the maximum learning rate is
reduced to 90% of its value, and the cycle is repeated for 1.5× as many epochs. Overall,
the AET is trained for 90 epochs, minimizing the mean squared error (MSE) loss (as
defined in Eq. 7.1) between Ŷ and Y . The model with the lowest validation error is then
selected for use as the backbone for the Perceptual Threshold Classifier.

6.3.6 Perceptual Threshold Classifier (PTC)

The Perceptual Threshold Classifier (PTC) corresponds to the function ρ from Eq. 6.3.
Given a TER of the input image, encoded using the AET (φ in Eq. 6.3), the PTC
assigns a class to each input pixel, based on whether it is affected by a suprathreshold
transformation.

PTC: Network Architecture

Given the trained AET model described in Section 6.3.5, the encoder and decoder shown
in Figure 6.3 are extracted and the final single-channel convolutional layer of the decoder
is replaced with a spatial dropout layer with a dropout probability of 75%, followed by
a 3-channel convolutional layer with a softmax activation. The AET-specific elements,
such as the second image input and the feature pooling and concatenation layers, are
removed. As such, the network resembles a conventional convolutional autoencoder. The
relationship between the architecture of the AET and the PTC is illustrated in Figure 6.5.

PTC: Training Data Generation

Using the image-wise perceptual thresholds collected in the 2AFC experiment (see
6.3.4), a data generation method is devised which dynamically applies random exposure
transformations to the images used in our 2AFC experiment and generates corresponding
class maps, based on whether the parameter of the transformation x exceeds one of the two
empirical thresholds estimated for a given image. When x exceeds a threshold, any pixels
affected by this suprathreshold transformation are assigned c = 0 (negative suprathreshold
exposure shift) or c = 1 (positive suprathreshold exposure shift), following Equation 6.4.
The last channel of the target image corresponding to c = 2 is conceptually similar to the
background class in semantic segmentation models, indicating pixels that do not belong to
any of the foreground classes. In our case, these are pixels unaffected by a suprathreshold
transformation. We use a 90%-10% training/validation split. The shape of the target
mask is (224, 224, 3), containing one channel per class. During training, a data generator
constrained to ensure a balanced class distribution in each minibatch is used. Specifically,
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Figure 6.5: Illustration showing how key architectural elements from the AET network are
incorporated in the PTC network. Red boxes indicate frozen weights.

for each batch x is sampled from three random distributions whose ranges are defined by
the perceptual thresholds for a given image:

x ∈ R :


(log2(0.1), xt−), if x < xt−

(xt+, log2(10)), if x > xt+

[xt−, xt+], otherwise

(6.8)

The distribution for c = 2 is log-uniform, whereas the distributions for classes 0 and 1 are
exponential distributions biased towards values of x lying close to the thresholds xt− and
xt+ respectively. These three values of x are then used to create three processed images and
corresponding target masks Y , one for each class. For larger batch sizes, multiple images
for each class are sampled. To improve generalization, image augmentation techniques
are used, specifically random zooming, rotation, and cropping. These are selected as in
order to keep relative pixel intensities unchanged. Horizontal and vertical flipping, as
well as random scaling and cropping in the range 110-150% are each performed with 50%
probability.

PTC: Objective & Optimizer Details

The optimization process adopted for the PTC is based on the approach from Section
6.3.5 with minor changes to address the size of the training dataset First, a loss function
appropriate for pixel-wise classification with an imbalanced dataset is selected. In most
images in the training dataset, the background class occupies more pixels than either of
the suprathreshold classes. In the context of DL, such dataset imbalance is not desirable
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and tends to lead to suboptimal accuracy. This imbalance can be addressed by reducing
the contribution of easy classification examples (presumed to be more common in the
dataset) to the overall loss. This can be done at the dataset design stage, or by modifying
the training loss. Focal loss (Lin et al., 2017) is one such approach. Focal loss reduces
the contribution of easy examples to the overall loss, by scaling the loss for each example
based on the confidence:

FL(pk) = −αt(1− pk)γ log(pk) (6.9)

where pk is the output of the model, indicating the probability assigned to class k, alpha
is a balancing factor and gamma is the focusing parameter. In the presented experiments,
these parameters are set to their default values (α = 0.25, γ = 2.0).

The PTC model is trained with a batch size of 12, using early stopping to cease training
when no improvement in validation loss is seen for 400 epochs. The model maximising
the validation mean intersection-over-union measure is selected for further evaluation. In
order to evaluate the relevance of the AET features, the network is also trained with
progressive freezing of the AET backbone.

PTC: Evaluation Protocol

In order to evaluate the performance of the PTC, 5-fold cross-validation is used: the model
is trained on 5 random folds of the training and validation data, reporting average MSE
between the predicted and ground truth thresholds in the validation sets. To achieve this,
a psychometrics-inspired method for finding the model’s decision boundary is developed,
whereby the model’s decision boundary serves as a threshold to be compared against
empirical thresholds from the perceptual experiments. Specifically, the soft F1 score
between the output probability maps and the ground truth object masks is calculated
for a range of transformation magnitudes. A threshold can then be defined based on the
transformation magnitude corresponding to a particular F1 score. The soft F1 score is
defined as:

F1(Y, Ŷ ) = 2 ∗
ε+

H×W∑
i=0
|YiŶi|

ε+
H×W∑
i=0
|Yi|+

H×W∑
i=0
|Ŷi|

(6.10)

where Y is the ground truth transformation mask, Ŷ is the predicted transformation
mask, ε is a small constant. When evaluating the AET for each image from the validation
dataset, a threshold is placed at the transformation magnitude corresponding to an F1
score of 0.1.
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(a) (b)

Figure 6.6: Illustration of experimental results: a) Empirical thresholds collected in the 2AFC
experiment, as well as b) corresponding response time distribution, expressed as a function of
exposure offset

6.4 Results

This section presents the results of the 2AFC study, as well as a performance evaluation of
both the AET and PTCmodels. In particular, a baseline evaluation is performed on each of
the models. This is followed by extended evaluation of the PTC, both against ground truth
JNDs, as well as in the context of auxiliary tasks, such as composite object localisation. In
addition, the feature embeddings learned by the AET are compared to baseline ImageNet-
based embeddings to illustrate the transformation equivariance of the proposed model.
A cross-validation of the PTC is also presented, indicating its superior performance on
the perceptual threshold dataset, compared to baseline methods. Finally, the outputs of
both models are illustrated, and additional qualitative evaluation is performed using an
authentic image composite dataset from Xie, Xu and Chen (2012).

6.4.1 Perceptual Threshold Estimation

In the 2AFC study, a total of 41725 unique responses are obtained, with an average of
23.14 responses per observer-image combination. A total of 590 mean thresholds for 295
images are calculated after fitting psychometric functions, bootstrapping and removing
images with outlier thresholds beyond 3 standard deviations (Fig. 6.6a). The means of
the resulting threshold distributions are xt− = −0.2478 and xt+ = 0.2280 for negative and
positive thresholds, respectively. Observers take on average 2.65s per response. Analysis
of distributions of response times and exposure transformation magnitudes sampled by
the QUEST procedure (Fig. 6.6b) shows that response times (RTs) fall into two distinct
groups - responses provided within and outside the 5s time limit. In the former scenario, it
can be observed that shorter RTs are more commonly observed when the transformation
magnitude is high, while lower-magnitude transformations tend to contribute to higher
RTs.

On average, perceptual thresholds were lower for highly-textured and bright objects.
Significant correlations between the mean luminance of target objects and corresponding
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mean thresholds were also found. For negative offsets, the Pearson product-moment
correlation coefficient was r = .25 (p ≤ .001) and r = −.39 (p ≤ .001) for positive
offsets. A similar correlation between the standard deviation of object luminance values
was found: r = .30 (p ≤ .001) for negative and r = −.45 (p ≤ .001) for positive offsets.
No significant correlations between perceptual thresholds and target object areas were
observed. However, the highest perceptual thresholds were observed in images with very
small objects. This is illustrated in Figure 6.7, which shows examples of mean perceptual
thresholds visualised for individual images, based on the results of the 2AFC study.
Figures 6.7a-6.7d show images, where positive and negative perceptual threshold values
are balanced, Figures 6.7e-6.7h illustrate images with the highest positive thresholds, while
Figures 6.7i-6.7l show examples of images with the highest negative thresholds. In these
examples, small dark objects, particularly those with weak textures, are often associated
with high perceptual thresholds. For example, the vase in Figure 6.7f requires a 0.74 stop
exposure shift before being reliably detected as modified. Also, objects in visually busy
scenes, or occluded locations, tend to yield higher thresholds, like the box of chocolates in
Figure 6.7h, the rear car in Figure 6.7j, or the laptop in Figure 6.7l.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

(k) (l)

Figure 6.7: Visualisation of mean image-wise perceptual thresholds collected in the 2AFC study.
Subfigures a) through d) show examples of balanced positive and negative thresholds, located near
the mean thresholds of the dataset. Subfigures e) through h) illustrate examples of images with
the highest positive threshold values, while subfigures i) through l) show examples of images with
the highest negative threshold values.
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Figure 6.8: Mean MSE between ground truth and prediction for AET prediction errors for the
validation dataset, across a range of exposure shifts. Error bars indicate the standard deviation of
MSE for each transformation magnitude.

6.4.2 AET

The AET is evaluated by calculating MSE between predicted Ŷ and ground truth Y

transformation masks for a range of transformation magnitudes. Figure 6.8 illustrates
mean errors and their standard deviations across the 5000 validation images, for a set of
33 discrete transformation magnitudes between −3 and +3 exposure stops. Overall, as the
magnitude of the transformation is increased, the AET’s prediction accuracy decreases.
This is likely due to the clipping that can occur at high magnitudes, reducing the relative
differences between neighbouring pixels and consequently removing texture information.
The model achieves the lowest average errors when the transformation parameter is 0.

Figure 6.9 illustrates the output of the trained AET for multiple exposure offsets applied
to the same input image. The line plot in Fig. 6.9e illustrates the normalised MSE between
the ground truth and predicted transformation masks. It can be seen that the prediction
error increases as a function of transformation magnitude. The heatmaps in Figures 6.9c
and 6.9d show the predicted and ground truth transformation maps, respectively. Green
indicates positive exposure shifts, pink indicates negative exposure shifts.

Figure 6.10 illustrates the impact of the proposed pre-training procedure on the
distribution of image embeddings in feature space. Each of the subfigures illustrates the
embeddings of 11 variations of an image generated by applying exposure shifts of different
magnitudes (annotated for each point). Embeddings in the left figure are generated using a
Resnet-50 network pretrained on ImageNet, while the central and right plot are generated
using the AET’s bottleneck and output features. For each model, features for 100 images
from the validation set are first extracted and PCA is then performed on those features
for each model. It can be seen that both the AET latent and AET output features encode
the direction and magnitude of exposure transformations applied to the input better than
the Resnet-50 baseline.
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(a)

(b)

(c)

(d)

(e)

Figure 6.9: Illustration of AET output vs ground truth for a series of inputs. a) original images and b) synthetic composite images affected by local exposure
transformation. c) predicted transformation maps, d) ground truth transformation maps, e) MSE between ground truth and predicted transformation maps,
illustrated for a range of exposure shift values.
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Figure 6.10: Principal component visualisation of features extracted from images affected by local
transformations of different magnitudes. Left: Resnet50 pretrained on ImageNet - output features,
no pooling; centre: AET - bottleneck layer features; right: AET - output layer features
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6.4.3 Perceptual Threshold Learning
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(a)

(b)

Figure 6.11: Illustration of how change in F1 score between predicted and ground truth (not shown here) masks is used to estimate our model’s decision
boundary. The top row shows input images, the middle row shows model prediction softmax probabilities with red for detected negative offsets (class 0),
green for positive offsets (class 1) and blue for no offset. The bottom row shows class-wise F1 scores for classes 0 and 1. More examples in Figure 6.12.
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(b)

Figure 6.12: Illustration of how change in F1 score between predicted and ground truth (not shown here) masks is used to estimate our model’s decision
boundary. The top row shows input images, the middle row shows model prediction softmax probabilities with red for detected negative offsets (class 0),
green for positive offsets (class 1) and blue for no offset. The bottom row shows class-wise F1 scores for classes 0 and 1.
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Freeze Up To Layer MSE both MSE xt− MSE xt+

no freeze 3.9690 3.5716 4.3664
block1 pool 0.3028 0.2618 0.3442
block2 pool 0.2098 0.2188 0.2000
block3 pool 0.1895 0.1633 0.2161
block4 pool 0.2350 0.2025 0.2681
block5 pool 0.1335 0.1624 0.1046
concatenate 0.1148 0.1307 0.0978

Table 6.1: Cross-validation results: Average mean squared validation errors between ground truth
thresholds and model predictions are given in exposure stops. Individual errors for positive and
negative exposure offsets are shown in the rightmost two columns. Errors in each row are a result
of freezing progressive parts of the pre-trained AET backbone.

As no previous work has addressed the problem of perceptual threshold approximation, it
is impossible to compare the proposed model to existing approaches. Consequently, See
Figure 6.11 for an illustration of the soft F1 score as a function of exposure shift. More
visual examples can be found in the supplementary materials.

To evaluate the relevance of features learned by the AET, this analysis is performed for a
range of fine-tuning regimes, where different parts of the model are frozen before training.
The results of this experiment can be seen in Table 6.1. Overall, the results indicate
the benefits of adopting both the AET and multiscale extension, particularly considering
the performance increase afforded by freezing the entire encoder and only fine-tuning
the decoder. The model’s performance drops significantly when the pre-training stage is
omitted or when all layers of the pre-trained model are allowed to be fine-tuned.

6.4.4 Application to Real Composite Images

In order to evaluate the generalisability of the PTC to other transformation types and
non-synthetic (as in: not generated by applying transformations to real images) image
composites, the model is applied to the dataset proposed by Xue et al. (2012). As the
composites in this dataset contain elements from different source images, there are no
transformation magnitudes that could be compared against the empirical JNDs from the
experiments presented here. Instead, the normalised spatial response of the model is
visualised to verify whether it can localise composited elements accurately. To perform
this, the pixel-wise maximum suprathreshold prediction is taken, as differentiation between
positive and negative transformations is not needed for this evaluation

Pi,j = max(Ŷi,j,p− , Ŷi,j,p+) (6.11)

Here, Ŷi,j,p− is the predicted probability of the negative suprathreshold class for the pixel
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located at the ith row and jth column of the input image, Ŷi,j,p− is the respective predicted
probability of the positive suprathreshold class, and P is a matrix containing a single
probability value for each pixel of the input image. This is followed a normalisation step

M̂i,j = Pi,j
max(P ) (6.12)

resulting in the normalised matrix M̂ . See the right-most images of Figures 6.13 and 6.14
for visual examples of M̂ .

In order to quantify the performance on true (as opposed to synthetic) image composites
the receiver operating characteristic (ROC) is calculated (see Fig. 6.15 for illustration).
The ROC curve illustrates the change in the true postive and false positive rates of the
classifier as the discrimination threshold is varied.

6.5 Discussion

The results of this study indicate that the methodology proposed in this chapter is an
effective approach to both detecting effects of local transformations in natural images,
as well as learning generalisable observer functions, describing subjective properties of
natural images. This can be learned directly from image data and corresponding subjective
responses, or models thereof. This section discusses each element of this study, as well as
the obtained results, in the context of preceding chapters and related work.

6.5.1 2AFC Study & JNDs

Compared to the results from Chapter 4, where the generalised JNDs for exposure
transformations were −0.54 stops 95%CI[−0.37 ,−0.64] and 0.30 stops 95%CI[0.13, 0.38]
for negative and positive exposure transformations respectively, the mean JNDs obtained
in this experiment were lower (−0.25 and 0.23 stops respectively). Since the QUEST
method used in the latter study presented observers with many sequential repetitions of
the same image, while the former only displayed each scene once per observer, such a
tightening of JNDs is expected. Additionally, the dataset for this study was expanded,
compared to that in Chapter 4. Finally, since experiments were conducted in an image-wise
fashion, the strategy for aggregation of the 2AFC data is also different: the responses of
observers for a single image were aggregated (as opposed to aggregating across all images),
followed by the fitting of a psychometric function using the methodology from Chapter
4. The JNDs obtained in this manner are also more balanced, compared to those from
Chapter 4, where JNDs for negative exposure transformations were considerably higher
than those for positive transformations. These results suggest that image-wise calculation
of JNDs enables implicit modelling of the contextual factors discussed in Chapters 4 and
5, such as the base object appearance, its immediate surroundings, as well as auxiliary
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Figure 6.13: Input composite images from Xue et al. (2012) (left), ground truth composite masks
(middle) and the normalised outputs of the PTC for suprathreshold classes (right). Despite being
trained solely on exposure shifts, the model generalises well to detecting appearance differences
present in real composites.
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Figure 6.14: Input composite images from Xue et al. (2012) (left), ground truth composite masks
(middle) and the normalised outputs of the PTC for suprathreshold classes (right). Despite being
trained solely on exposure shifts, the model generalises well to detecting appearance differences
present in real composites.
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Figure 6.15: ROC curve illustrating the performance of the PTC when used for localisation of
composited objects in the dataset from Xue et al. (2012). The abcissa illustrates both the false
positive rate, as well as the discrimination threshold, for which both rates are calculated. The red
dashed line illustrates the performance of a random classifier for comparison. The AUC label in
the legend illustrates the area under the curve.

factors such as nearby illumination. This is enabled by the nature of the proposed model,
which creates a perceptual mapping for every pixel of the input.

6.5.2 TER via AET

The effectiveness of the TER, learned following the AET paradigm, is best illustrated
when applying it to an auxiliary task - in this case as a feature extractor in a perceptual
classification task using the PTC. As illustrated in Table 6.1, the PTC achieves the best
performance when the weights of the AET are not allowed to be further tuned. As such,
the training task is reduced to learning a decoder to map from the TER feature space to
the space of the perceptual task, as defined in Section 6.3. This also indicates that the
TER is able to encode the approximate location and magnitude of a transformation, from
local appearance statistics, without relying on a reference image.

These results also reinforce the argument of Bengio, Courville and Vincent (2013), who
stressed the importance of data representation in machine learning problems. For example,
it is well-known that classifiers and object detectors perform best when relying on feature
representations invariant to appearance differences (Schmidt and Roth, 2012). On the
other hand, the problem of visual realism, or other subjective properties based on distortion
visibility, requires these distortions to be well represented in feature space, if they are to
be successfully mapped to a subjective opinion score, or saliency map. In the presented
methodology, this transformation equivariance is encoded through self-supervised training
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Figure 6.16: Example of a) Over-exposure resulting from flash or spot lighting in the original image
b) both the original over-exposure (green) and manually applied underexposure (red) are detected
by our model c) mask showing area where negative exposure shift is manually applied

and a relevant data augmentation strategy. However, this is not to say that more optimal
solutions do not exist.

While more efficient implementations of the proposed methodology and various
optimisations are certainly possible, the proposed framework is general-purpose and can
be easily applied to various local image transformations, which can be annotated using a
pixel-wise parameter map, as illustrated in Section 6.3.

6.5.3 Approximation of Empirical JNDs

In terms of alignment with experimental data, the PTC obtained a low average MSE of
0.11 stops when comparing predicted to ground truth JNDs. Despite the fine-tuning of
the PTC being performed using a relatively small training set, the model performs well
on unseen data. For example, in Figure 6.16 the model detects both the transformation
applied to it, as well as the pre-existing over-exposure of the object on the right. A
similar scenario was illustrated in Figure 6.11b, however, in this scenario the change in
the appearance of the foreground object triggers a false positive. Interestingly, this only
occurs for a select few transformation magnitudes, suggesting the potential of reciprocal
interactions between local image regions, whereby a change in one impacts the model’s
prediction of a directly neighbouring region. This also illustrates a wider problem, whereby
high-contrast regions in natural images may trigger false positives. Further analysis is
necessary to understand the causes behind such edge cases.

6.5.4 Towards a General Representation of Naturalness

In addition to the effectiveness of the learned representation on the task of local
transformation detection in synthetic image composites, there is evidence that these
features, conditioned on exposure transformations, are at least partly generalisable to other
image composite artefacts. This is illustrated when applying the PTC to authentic image
composites, featuring objects from other images, rather than just local transformations.
As seen in Figures 6.13 and 6.14, the PTC is capable of localising these objects consistently
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(see Fig.6.15) on unseen, out-of-domain data, without any additional training. This also
signifies that exposure shifts may perceptually correlate with the types of distortions
present in authentic composites. These likely encode more complex appearance differences,
which are a result of a combination of multiple transformations, some of which may
be nonlinear. Consider a combination of some effects discussed in Chapter 2, such as
differences in scene illumination or in-camera processing. While their combined effect may
be a nonlinear function of the input, perhaps the statistical differences between object and
scene induced by a local exposure transformation are sufficiently similar to those present
in an authentic composite.

Consequently, assessment of visual realism in image composites may not necessarily require
a TER trained on a exhaustive range of specific transformations. Instead, this problem can
be abstracted to the detection of any and all image perturbations, followed by perceptual
tuning, using a small subset of subjectively labelled data. As such, the TER would have
to learn to encode the local statistical ‘naturalness‘ of image regions, as well as, more
importantly, the local deviation away from this naturalness. To achieve this, one could rely
on the same set of self-supervised training techniques and generalise the transformation
parameter maps to logarithmic difference maps.

6.5.5 Wider Applications

Identification of unrealistic composited objects can be applied directly to image
compositing and harmonisation problems. State-of-the-art approaches to composite
realism improvement, such as Sunkavalli et al. (2010) or Tsai et al. (2017), often
require explicit identification of pixels belonging to the composited object by specifying
binary object masks, thus significantly limiting application scenarios to ones where
such object masks are available. As existing harmonisation models also rely on CNN-
based architectures and gradient-based optimisation techniques, the model proposed
in this chapter could be incorporated into such harmonisation pipelines and address
this limitation with little modification. This, in turn, would allow for no-reference
harmonisation of image composites, using the output of the PTC as a replacement for
a pre-existing ground truth object mask.

6.6 Conclusions

This chapter has presented a novel methodology for the detection of local suprathreshold
image transformations based on approximation of the image-wise function performed
by an observer. This is achieved by first learning a transformation equivariant
representation conditioned on local exposure transformations, followed by fine-tuning
of a fully convolutional image classifier on top of the TER, and conditioning its class
decision boundaries using a data generation scheme based on empirical perceptual
thresholds corresponding to JNDs. The resulting model is capable of approximating
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human JNDs with an average error of 0.11 stops. Furthermore, when applied to authentic
image composites, the proposed model is able to reliably indicate the location of the
composited object, suggesting that the features learned from training on local exposure
transformations applied to natural images can be generalisable to composite images in the
wild. While the proposed method is illustrated only for local exposure transformations,
it can be applied to many local distortions or transformations, provided these can be
synthesised and represented by a transformation map. A further interesting direction is
the extension of this approach to high dynamic range images, as this study only evaluates
8-bit images, and thus the presented results are constrained to this bit depth.

In order to illustrate a practical application scenario, and building on the results of
applying the proposed models to authentic image composites, Chapter 7 will investigate
how the proposed models can be applied to the perceptually-related task of image
harmonisation.
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Chapter 7

Applying Perceptual Models in
Image Harmonisation

This work was published in:
Dolhasz., A., Harvey., C. and Williams., I., 2020. Towards unsupervised image
harmonisation. Proceedings of the 15th international joint conference on computer vision,
imaging and computer graphics theory and applications - volume 5: Visapp,. INSTICC,
SciTePress, pp.574–581. Available from: http://doi.org/10.5220/0009354705740581

extended version is pending publication in:
SPRINGER CCIS

7.1 Introduction

Chapter 6 illustrated that a deep convolutional neural network can be used to model human
perceptual sensitivity in the context of composite artifact detection. This was achieved by
learning a mapping from composite images to corresponding masks indicating the existence
of local suprathreshold transformations, based on image-wise JNDs, measured using the
methodology from Chapter 4 and informed by empirical evidence about spatial allocation
of attention from Chapter 5. A methodology for data collection, self-supervised pre-
training, and model fine-tuning based on perceptual data were proposed. Upon evaluation,
the resulting model was shown to approximate image-wise perceptual thresholds with low
error, as well as localising composited objects in authentic image composites, suggesting
the features learned by the model may be transferable to auxiliary tasks. Consequently,
this chapter combines and applies the findings thus far to address the core problem of
this thesis, namely image composite harmonisation: perceptually-informed improvement
of composite realism.

This is accomplished through joint and explicit modelling of both detection and
harmonisation of composite artefacts in an end-to-end manner. The detection task
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is performed using the model proposed in Chapter 6, while the harmonisation task is
accomplished using a state-of-the-art harmonisation model. Such an approach allows
for the harmonisation process to be informed directly by the perceptually-calibrated
detection model, instead of relying on binary object masks required at input by existing
harmonisation techniques. In combination with previous chapters, the work discussed
here illustrates the final step in a general framework for perceptual calibration of image
compositing tasks. This framework consists of empirical modelling of observer sensitivity
to local image transformations (Ch. 4), the corresponding spatial attention allocation
(Ch. 5), the generalisation of such models using transfer learning techniques (Ch. 6) and
finally their integration and joint training with state-of-the-art harmonisation techniques,
presented in this chapter. This novel approach is first evaluated through a baseline
combination of pre-trained models and then extended into a single, end-to-end model,
capable of outperforming current state-of-art techniques across two datasets and showing
improvement in the compositing task, using two different end-to-end model architectures.

7.2 Related Work

7.2.1 Image Compositing, Harmonisation and Deep Learning

As illustrated in previous chapters, a naïve combination of elements from different source
images is very likely to produce an unrealistic compositing result, due to the various
appearance-based differences present between natural scenes, which become noticeable
and negatively impact visual realism when these elements are combined. To address this,
such appearance-based differences between individual elements of a composite should
be minimised, in order to produce a plausible end result (Wright, 2013b). As such,
harmonisation is perhaps the most important stage of the compositing process, when
a high degree of visual realism is desired.

Similarly to the problem of image in-painting (Bertalmio et al., 2000) or the extraction of
3-D information from a 2-D retinal image (discussed briefly in Chapter 2), compositing and
harmonisation are both ill-posed problems (Guillemot and Le Meur, 2013). In contrast to
problems where the solution is unique, for a given region of an image composite requiring
correction, many different arrangements of pixels could be deemed plausible. Depending
on the content and context of a composite, some scene properties, and thus required
object corrections, may be inferred from the information contained within the image or its
metadata, such as the characteristics of the illuminant (Shi, Loy and Tang, 2016), colour
palette, contrast range or the camera response function. Other properties, such as an
object’s albedo, texture or shape are often unique to the object and cannot be derived
directly from contextual information in the scene. While methods for approximation
of these properties do exist (Gardner et al., 2017), they are difficult to integrate into
end-to-end systems and can be challenging to parametrise. Recently, advances in DL
(see Chapter 3 for a review) have motivated a number of approaches which exploit
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the huge amount of natural imagery available in public datasets in order to learn a
mapping between corrupted composite images and their corrected counterparts, or natural
images. Several methods relying on variants of convolutional autoencoders (AEs) have
been successfully used to directly approximate the harmonisation function, in a supervised
learning setting. Notably, Tsai et al. (2017) use a convolutional AE in a multi-task
setting to both segment and harmonise an input image, provided the target object mask.
Chen and Kae (2019) use a generative adversarial network (GAN) to perform both colour
and geometric transformations, pre-training their model on synthetically-generated data.
Conditional GANs have also been applied in this context (Azadi et al., 2018), by learning to
model joint distributions of different object classes and their relationships in image space.
This allows for semantically similar regions to undergo similar transformations. Another
technique, proposed by Cong et al. (2020), combines attention mechanisms and GAN-
based architectures with explicit object-scene knowledge implemented through masked
and partial convolutions and provide a dedicated benchmark image harmonisation dataset,
dubbed iHarmony.

However, as mentioned in Section 6.5, a common requirement of these existing techniques
is the provision of binary object/scene segmentation masks at input, both during training
and inference. These masks serve as an additional feature, or a form of manually encoded
attention, identifying the image pixels that require harmonisation. As such, these methods
are only applicable to scenarios where new composites are generated, and these masks are
available. In cases where these ground truth masks are not available, these techniques
can not be applied without human intervention, precluding their application to scenarios
such as harmonisation of legacy composites. Moreover, existing methods do not explicitly
leverage perceptual characteristics of humans - the conventional target audience for image
composites. Human sensitivity to different local image disparities between object and
scene has been shown to correlate with subjective realism ratings, as discussed in Chapter
4. Lastly, binary object masks used in these techniques provide only limited information
about the nature of the required corrections, indicating only the area where corrections are
needed. Due to the varying perceptual impact of distortions applied to regions of different
appearances, as illustrated in Chapters 4 and 5, explicit modelling of both detection and
correction of image composite artefacts may afford improvements in terms of quality, as
well as allow for wider application of such harmonisation algorithms.

7.2.2 Multi-task Learning, Feature Sharing & Attention

Due to the abundance of natural image data and the ill-posed nature of the compositing
problem, DL approaches are well-suited for this task. However, supervised DL methods
require large amounts of annotated data in order to learn and generalise to unseen data.
This requirement grows along with the complexity of a problem and the desired accuracy.
In order to tackle this issue, numerous architectural considerations have been proposed,
many of which focus on learning good feature representations, which generalise well
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between tasks.

Multi-task learning approaches rely on performing multiple related tasks in order to learn
better feature representations. In recent years many tasks in image understanding have
achieved state-of-the-art performance by incorporating multitask learning (Evgeniou and
Pontil, 2004), for example in predicting depth and normals from a single RGB image (Eigen
and Fergus, 2015), detection of face landmarks (Zhang et al., 2014) or simultaneous image
quality and distortion estimation (Kang et al., 2015). This is afforded by the implicit
regularisation that training a single model for multiple related tasks imposes (Caruana,
1997), and the resulting improved generalisation. Feature sharing approaches combine
deep features from related domains or tasks in order to create richer feature representations
for a given task. This is similar to the multitask paradigm, however instead of sharing a
common intermediate feature representation, features from one or multiple layers of two or
more networks are explicitly combined. The Deep Image Harmonisation Tsai et al. (2017)
(DIH) model Tsai et al. (2017) adopts both these paradigms, by combining the tasks of
image segmentation and harmonisation and sharing deep features of both task branches.
Finally, attention mechanisms Cun and Pun (2020) can also be used to learn the relative
importance of latent features for different combinations of task and input sample.

7.2.3 Attention instead of masks

State-of-the-art image harmonisation methods focus largely on improving composites in
scenarios where the identity of pixels belonging to the object and scene are known a
priori. For example, the DIH approach (Tsai et al., 2017) uses an AE-based architecture
to map corrupted composites to corrected ones, incorporating a two-task paradigm, which
attempts to both correct the composite, as well as segmenting the scene. However,
this approach does not explicitly condition the network to learn anything more about
the corruption, such as its magnitude, type or location. Instead, object location
information is explicitly provided at input, using a binary mask. A similar approach
(Chen and Kae, 2019) inputs the object mask at training time, while also introducing
mask segmentation and refinement within a GAN architecture, in addition to learning
of geometric transformations of the object. The segmentation network, as part of the
adversarial training process, discriminates towards ground truth binary masks as an output
- omitting any perceptual factor in the discrimination task. This achieves improved results
compared to the AE, however at the cost of a more complex architecture and adversarial
training. Due to the many dimensions along which combinations of object and scene may
vary, compositing systems should be equipped to encode such differences before attempting
to correct them. Kang et al. (2015) show that a multitask approach is an efficient way
to ensure that distortions are appropriately encoded by the model. Other approaches
to this problem include self-supervised pre-training to enforce equivariance of the latent
representation to certain input transformations (Zhang et al., 2019), which has been used
to train perceptually-aligned local transformation classifiers in Chapter 6.
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Additionally, as discussed in Chapter 3, removing the requirement for an input mask from
image composite harmonisation algorithms would allow for application at scale to legacy
content. In scenarios where raw image composite elements are not readily available, this
would remove the need for manual mask generation. This in turn would allow application
to classic films, photographs and photo-montages and any other finished image composites,
for which source materials may no longer be available. This, in turn, would allow for
reductions in the cost and labour associated with restoring legacy content. Even in
scenarios where masks are available, these could be perceptually re-weighted based on
the approaches proposed in this thesis, before being used in the harmonisation process.
In other words, harmonisation algorithms should be able to detect and estimate the
magnitude of perceptually-relevant distortions or corruptions, even if a binary mask is
supplied to locate them.

7.3 Methodology

Figure 7.1: System overview: illustration of the detector and harmoniser combined into a two-stage
composite harmonisation system. A synthetic composite image is first supplied to the detector,
which outputs a 2-channel mask indicating detected negative and positive (not pictured here)
exposure shifts. This mask is converted to a single-channel representation by taking a maximum
over predicted pixel-wise probabilities and fed to the harmonisation network, which then produces
a harmonised composite, which we compare against the ground truth.

7.3.1 Overview

The overarching goal of this thesis (stated in Section 1.3) is “to produce perceptually-driven
systems to facilitate computational subjective quality analysis of image composites and
guide the subsequent manual or automated improvement of their quality.”. Accordingly,
this chapter evaluates the PTC model developed in Chapter 6 in the context of this
overarching aim: perceptually-informed improvement of composite realism. Specifically,
the PTC is combined with a state-of-the-art harmonisation model: Deep Image
Harmonisation (DIH) proposed by Tsai et al. (2017). The authors’ original pre-trained
implementation is used (see https://github.com/wasidennis/DeepHarmonization).
The architecture of the model can be seen in Figure 3.4. In this context, the PTC is
provided with an input composite image and performs the detection task, outputting a
mask fed to the DIH model along with the input composite image, as illustrated in Figure
7.1. The modular nature of the proposed architecture allows for the component models
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Figure 7.2: Illustration of the preliminary two-stage evaluation of the standalone models. Given
a dataset of synthetic composites with corresponding ground truth (GT Masks) masks, a set of
predicted masks (PTC Masks) is first generated using the PTC model. Two sets of harmonised
images are then generated using the DIH model. The first set uses ground truth masks, while the
second set uses masks predicted by the PTC to harmonise the input composites. Finally, errors
are calculated between each of the sets of harmonised composites and the corresponding ground
truth.

(the PTC and DIH) to be first evaluated separately, before being combined into an end-
to-end model and trained jointly.

7.3.2 Approach

Based on the performance of the PTC on localising inserted objects in authentic composite
images (discussed in Section 6.4.4), the proposed combination of the PTC and DIH can first
be evaluated in a two-stage manner. This approach allows for comparison of composite
harmonisation results obtained using the DIH model with ground truth binary masks
against those obtained using the harmonisation masks generated by the PTC. This allows
to assess whether the end-to-end process is viable using the standalone, pre-trained PTC
and DIH models, without the need for additional joint training. This process is illustrated
in Figure 7.2.

The hypothesis that the performance of this baseline detection and harmonisation model
is comparable to a harmonisation model using manually created object masks is evaluated.
Confirmation of this hypothesis would support the development and training of an end-
to-end model. This research methodology is summarised in Figure 7.3.

7.3.3 Test Dataset

The test dataset is generated following the approach of Tsai et al. (2017), which is
illustrated in Figure 7.4. Specifically, pairs of images (see Figs. 7.4a and 7.4c) containing
objects belonging to the same semantic category are sampled from the MSCOCO dataset
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Figure 7.3: Illustration of research methodology adopted in the two-stage model evaluation.

(Lin et al., 2014), along with corresponding object masks (see Figs. 7.4b and 7.4d). Using
these object masks, statistical colour transfer based on histogram matching (Reinhard
et al., 2001) is performed between the pixels of objects belonging to the same category to
produce a synthetic composite image (see Fig. 7.4e). Examples of these images are also
shown in Figure 7.1.

Colour transfer is performed between object regions of the same semantic category. As the
PTC is trained on local exposure transformations, the colour transfer is only performed
on the luminance channel of the image represented in Lab colourspace.

A total of 68128 composites, corresponding ground truth images and ground truth object

(a) Source image (b) Source image
object mask

(c) Target image (d) Target image
object mask

(e) Result of colour
transfer from target

to source.

Figure 7.4: Dataset generation process adapted from Tsai et al. (2017): a) source image sampled
from MSCOCO, b) corresponding object mask, c) target image, d) target image object mask, e)
result of luminance transfer Reinhard et al. (2001) of source - c), to target - e.
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masks are generated. For the sake of brevity, this dataset is referred to as COCO-Exp
throughout the remainder of this chapter.

7.3.4 Evaluation Procedure

First, the input composites from the COCO-Exp dataset, along with corresponding
ground truth masks are fed to the DIH model, which outputs the first set of harmonised
images. Second, a set of masks is generated by feeding the input composites to the PTC.
As discussed in Chapter 6 the PTC is a pixel-wise 3-class classifier and outputs maps
probabilities of either the lack of, or the presence of negative or positive suprathreshold
local exposure transformations for each pixel of the input image. In order to convert these
into masks compatible with the DIH, the maximum of class probabilities is taken for each
pixel: M(i,j) = max(PTCout(i,j)). Here PTCout is the raw output of the PTC, given an
input composite, i and j are row and column indices, respectively, and M is the resulting
single-channel mask compatible with the DIH. Next, the input composites are harmonised
again, but this time usingM instead of the ground truth masks. Finally, similarity metrics
between ground truth images and composites harmonised by each of the two approaches
are calculated.

7.3.5 Similarity Metrics

To evaluate each of the two approaches, similarity metrics are calculated between ground
truth images and composites harmonised using the DIH model with either ground truth
masks or masks predicted by the PTC, as illustrated in Figure 7.2. The similarity metrics
used in this study are adopted from Tsai et al. (2017), namely Mean Squared Error (MSE):

MSE = 1
N

n∑
i=0

(Yi − Ŷi)2 (7.1)

where Y is the ground truth image and Ŷ is the harmonised image; and PSNR (Eq. 2.3)

here R is the maximum possible pixel intensity - 255 for an 8 bit image. In addition,
the Learned Perceptual Image Patch Similarity (LPIPS) (Zhang et al., 2018c) is used.
This measures visual similarity based on human perceptual characteristics, providing an
alternative to MSE or PSNR, which are not calibrated in line with human perception.

7.4 Results

The results of the two-stage evaluation can be seen in Figure 7.5, which shows distributions
of each of the similarity metrics calculated between ground truth images and composites
harmonised using the DIH model and either the ground truth masks or masks predicted
by the PTC, respectively. The means of these similarity metric distributions can be
seen in Table 7.1. This table shows that masks predicted by the PTC yield higher average
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Figure 7.5: Similarity metric distributions for harmonisation using GT masks (composites corrected
with synthetic ground truth masks) and PTC masks (corrected with masks predicted by the
detector) (a) MSE, (b) PSNR and (c) LPIPS. Larger values indicate poorer performance for MSE
and LPIPS, better for PSNR.

Figure 7.6: The image-wise error differentials for Cp-Cs, for each of the three metrics: (a) MSE,
(b) PSNR and (c) LPIPS. Note, negative values for MSE and LPIPS indicate images for which
Cp (composites corrected with masks predicted by the detector) achieves lower error than Cs

(composites corrected with synthetic ground truth masks). For PSNR, the obverse is true.

harmonisation errors across all three metrics compared to the ground truth masks, however
the magnitude of these differences is small for each of the metrics (3.1 for MSE, 0.63
for PSNR, and 0.0065 for LPIPS). Figure 7.6 shows distributions of image-wise error
differentials for both techniques.

7.5 Discussion

The results obtained in the two-stage analysis indicate that using detected, instead of
ground truth object masks when harmonising composites using the pre-trained DIH model

Metric DIH + GT masks DIH + PTC masks

MSE 19.55 22.65
PSNR 35.81 35.18
LPIPS 0.0227 0.0292

Table 7.1: Means of similarity metrics for both techniques evaluated against ground truth: DIH,
and the PTC+DIH. Lower is better for LPIPS and MSE, higher is better for PSNR.
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Figure 7.7: Examples of the DIH with ground truth masks over-compensating, and applying colour
shifts to compensate a luminance transform, resulting in suboptimal output. From left: a) ground
truth, b) input composite, c) output of DIH with masks predicted by the PTC, d) output of DIH
with ground truth masks, e) masks predicted by PTC, f) ground truth masks.

results in only a slight increase in average harmonisation errors across the COCO-Exp
test dataset. This suggests that additional training of the end-to-end combination of the
PTC and DIH models may improve this performance, by allowing the DIH training to be
influenced by the perceptually-informed PTC masks.

Importantly, as Figure 7.6 shows, harmonisation errors for a subset of the dataset
were lower for the masks predicted by the PTC, indicating that in some scenarios the
perceptually-informed masks can outperform ground truth masks. An example of this
can be seen in Figure 7.7, which illustrates examples of failure cases, where Figures 7.7c,
showing harmonisation results using predicted masks, and 7.7d showing harmonisation
results using ground truth masks, illustrate a case of colour bias induced by the DIH with
ground truth masks, both in the donut image as well as the hydrant image.

Further investigation indicates particular scenarios where this occurs. In some cases, the
harmonisation algorithm applies an inappropriate correction, rendering a higher error for
the composite harmonised using the DIH with ground truth masks, compared to the
unharmonised input. Then, if the predicted masks do not approximate ground truth
masks well, are blank (no detection), or their average intensity is lower than that of
a corresponding ground truth mask, the additional error induced by the harmonisation
algorithm is minimised, rendering lower errors for harmonisation using masks predicted
by the PTC. This can be seen in both images in 7.7d. This indicates the benefit of a
perceptually motivated approach to mask prediction, allowing a degree of influence over
the weight of the transformation applied by the harmoniser. The DIH model tends to
apply colour transformations regardless of whether they are required, based on the ground
truth mask. In some cases, the perceptually-based masks produced by the PTC mitigate
this problem. Images showing examples of comparable performance of the two methods
can be found in Figure 7.8. Subfigures c and d show the results of harmonisation using
predicted and ground truth masks respectively, and subfigures e and f show the predicted
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and ground truth masks, respectively.

Due to the nature of the PTC operating solely on luminance transforms, a further benefit to
the multitask learning paradigm is the generalisability to arbitrary pixel level transforms,
for example colour shifts. The binary masks accepted by harmoniser networks currently do
not separate across these transforms, they treat them all homogeneously. A perceptually
motivated approach to the predicted mask can encode, on a feature-by-feature basis, the
perceptual likelihood of harmonisation required. This is not to say, necessarily, that deep
harmonisation networks cannot learn this behaviour, but provision of further support to
encode this non-linearity at the input to the network, and/or by explicit optimisation at
the output, would likely benefit performance and improve generalisation Caruana (1997).
This is conceptually similar to curriculum learning improving convergence in reinforcement
learning problems Bengio et al. (2009), or unsupervised pre-training techniques improving
convergence in general.

The following section describes the development and training of an end-to-end combination
of the PTC and DIH models.

7.6 End-to-End Model: Methodology

Section 7.4 illustrated that perceptually-based detection of local image transformations
can be leveraged to generate masks capable of guiding image harmonisation and achieving
comparable results to ground truth masks, when evaluated on an image harmonisation task
using a state-of-the-art model. While harmonisation using ground truth masks achieved
lower errors on average, the masks predicted by the PTC were able to mitigate the need
for provision of input masks, at the cost of slightly higher harmonisation errors.

Given that this was achieved with no additional training indicates that an end-to-end
model combining both these tasks could be used to perform no reference harmonisation,
removing the need for provision of object masks for both training and inference, as opposed
to current state-of-the-art approaches. Additional joint training could also allow for overall
performance improvements and enable different combinations of the source models to
be evaluated. Thus, to allow for fair evaluation, the DIH model is re-implemented in
Tensorflow and trained anew on the iHarmony dataset (Cong et al., 2020), before being
combined in an end-to-end manner with the PTC and fine-tuned. This way both the DIH
and the end-to-end combination, dubbed PTC+DIH

7.6.1 Model Architectures

The end-to-end model is designed by combining the DIH and PTC models. First, the DIH
model is implemented in Tensorflow, according to the authors’ specification, and random
initialisation is performed on all layers. One outer layer of the encoder and decoder in
the DIH model is removed, following Cong et al. (2020), in order to accommodate for the
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Figure 7.8: Comparison of harmonisation outputs from the evaluation. From left to right: a)
ground truth, b) input composite, c) harmonised with DIH + GT masks, d) harmonised with DIH
+ masks predicted by PTC, e) Predicted masks, f) ground truth masks. Masks in colour indicate
the raw output of the PTC, where the direction of detected luminance shifts is indicated - red for
negative and green for positive shifts.
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lower resolution of the PTC. All training is then performed using a resolution of 256×256.
Two approaches to combining the DIH and PTC are evaluated.

PTC+DIH

The first approach, PTC+DIH combines the models sequentially, whereby the PTC
generates a mask from the input image, which is then concatenated with the input and fed
to the DIH model, as illustrated in Figure 7.1. The original 3-class softmax output of the
PTC is removed, and replaced with a single-channel sigmoid output, to match the mask
input dimensions of the DIH model. Up- and downsampling operations are also added
in order to adapt the input image to the 224 × 224 input resolution of the PTC, and its
output to the 256× 256 input resolution of the DIH.

PTC+att+DIH

The second approach, PTC+att+DIH, inspired by self-attention mechanisms (Vaswani
et al., 2017), relies on combining the latent features of both models through an attention-
like dot product:

ajoint = fc3
(
σ
(
fc1(aptc)

)
· fc2(adih)

)
(7.2)

where aptc is a vector of flattened activations from the bottleneck layer of the PTC, adih
is a vector of activations from the last convolutional layer of the DIH encoder, fcn are
trainable fully-connected layers with 512 neurons each, and σ is a softmax activation.

In both the PTC+DIH and PTC+att+DIH, the encoder of the PTC is frozen during
training, as in Chapter 6, however in the case of PTC+DIH, the decoder of the PTC is
allowed to learn, while in the PTC+att+DIH only the encoder is used. The PTC does not
receive any additional supervisory signals, such as ground truth object masks, or scene
segmentation, only the end-to-end MSE harmonisation loss.

Baselines

The performance of both end-to-end models is evaluated against two baselines - the vanilla
DIH (without semantic segmentation branch), which requires input masks (DIH-M ), and
a no-mask version of the same model (DIH-NM ), where masks are not provided as input
during training. To ensure a fair comparison, all models (bar the frozen part of the PTC)
are trained from random initialisation, using the iHarmony dataset and evaluated on the
COCO-Exp dataset from Section 7.3.3 and the iHarmony validation set. This is motivated
by the fact that the original PTC implementation is only conditioned on exposure shifts,
so a comparison across both datasets can illustrate the performance for simple exposure
shifts (COCO-Exp) versus more complex colour transformations (iHarmony). If the
perceptually-based features learned by the PTC generalise well across image features,
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an improvement should be seen over the naive DIH-NM model when evaluated on both
these datasets, as indicated by the qualitative evaluation in Chapter 6.

7.6.2 Optimization Details

All models are trained for 50 epochs using the entire training set of the iHarmony dataset,
consisting of 65742 training images and evaluated using the validation set, consisting
of 7404 validation images. The Adam optimizer (Kingma and Ba, 2014) with default
parameters and an initial learning rate of 0.001 is used. The batch size is set to 32 and a
256× 256 resolution is enforced. Pre-processing is applied to all input images, namely the
pixel intensity range is scaled from [0, 255] to [−1.0, 1.0]. For each training run, the model
weights corresponding to the lowest validation loss are selected for further evaluation.

7.6.3 Evaluation

In order to compare the performance of the proposed model against the baseline models,
the similarity metrics introduced in Section 7.3.5 are used, namely MSE (Eq. 7.1) and
PSNR (Eq. 2.3). These metrics are calculated between the ground truth images and the
harmonisation results, for each of the models under evaluation.

7.7 End-to-End Model: Results

This section presents the evaluation of the proposed models on both the validation set of
the iHarmony dataset, as well as the COCO-Exp dataset used in the two-stage evaluation,
introduced in Section 7.3.3.

Table 7.2 shows average MSE and PSNR values for both datasets and each of the
models. Both of the proposed end-to-end models improve performance on both the
iHarmony and COCO-Exp datasets, as compared to the naive baseline, when performing
harmonization with no input mask. This suggests the PTC features are relevant to the
image harmonisation task. Overall, the PTC+DIH achieves the best performance in
harmonisation with no input mask, outperforming the PTC+att+DIH and the DIH-NM
baseline.

Figure 7.9 illustrates the performance of all models under evaluation for several images
from the COCO-Exp dataset. Specifically, in each row the input and ground truth
are shown in Figures 7.9a and 7.9b respectively. Figures 7.9c, 7.9e and 7.9g show the
harmonised outputs of the DIH-NM, PTC+att+DIH and PTC+DIH models respectively,
while Figures 7.9d, 7.9f and 7.9h are difference image heatmaps between the input and the
harmonised output predicted by each model. These heatmaps provide an illustration of the
magnitude, direction and location of the applied correction. Upon inspection of similarity
metrics, the harmonised outputs and the difference heatmaps, it can be seen that the
PTC+DIH model outperforms both the baseline (DIH-NM) and the latent-space-based
combination of both models (PTC+att+DIH). This can be seen clearly when comparing
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Model iHarmony COCO-Exp
MSE PSNR MSE PSNR

DIH-M 89 32.56 201 32.18

DIH-NM 153 30.93 276 31.12
PTC+att+DIH 151 31.02 264 31.37
PTC+DIH 124 31.39 214 31.61

Table 7.2: Test metrics for all evaluated models, across the two datasets used in our experiments.
Lower is better for MSE, higher is better for PSNR. Best results using no input mask in bold.
Results for the input-mask-based baseline (DIH-M) shown for reference. Higher is better for
PSNR, lower is better for MSE.

the difference images: the PTC+DIH applies corrections more consistently across the
region of the target object, compared to the two alternatives. Figure 7.10 compares the
performance of the PTC+DIH to the mask-based DIH-M model for 3 versions of an input
image from iHarmony. It can be noticed that the output of both the PTC+DIH and DIH-
M closely follow that of the reference. The area corrected by the PTC+DIH aligns with
the ground truth mask. Small differences in the output images can be noted, particularly
around edges, where the PTC+DIH sometimes contributes to softness and smearing (e.g.
Fig.7.10e, middle row). This is often related to artefacts around the edges of objects and
near edges of images produced by the PTC. Nonetheless, despite the lack of input mask,
the PTC+DIH achieves consistent and comparable results for each of the image variations
and, in some cases, avoids the colour shifts induced by the DIH (e.g. compare columns d)
and e) with column c) of Figure 7.10), as discussed in Section 7.5.

Examples of failure cases can be seen in Figure 7.11. The top two rows illustrate the
most common failure case, where the region requiring harmonisation is not detected, and
thus not corrected by the model. The top row illustrates this scenario for a larger object
size, while the middle row does so for a small object (one of the sheep near the bottom
of the image). The bottom row shows a scenario where the harmonisation is performed
on the correct object, however the amount of correction is insufficient. In addition, the
model applies harmonisation to a part of the image not requiring harmonisation (the
screen). This behaviour is likely due to the fact that the PTC was originally conditioned
on exposure shifts, resulting in higher sensitivity to over-exposure, compared to other
image distortions.

The impact of object size on harmonisation performance of all models is summarised
in Table 7.3 for both the iHarmony and COCO-Exp datasets. Because the MSE is
calculated across the entire image, errors are overall lower for smaller objects. However,
when comparing the MSE of harmonised images against their baseline MSE (calculated
between the input image and ground truth), the relative MSE improvements are greatest
for larger objects. This trend is present across both datasets. The PTC+DIH achieves
the lowest errors in each object size category across both datasets. Notably, for objects
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Figure 7.9: Comparison of outputs from each model under evaluation for a range of images from
the COCO-Exp dataset. a) input image b) ground truth c) DIH-NM result d) Difference image
between input and output for DIH-NM e) PTC+att+DIH result f) difference image between input
and output for PTC+att+DIH g) PTC+DIH result h) PTC+DIH difference image. In difference
heatmap images, red indicates a positive difference (i.e. harmonised region is brighter than the
corresponding input region), blue indicates the opposite.
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(a) Input (b) Target (c) DIH-M (d) Mask (e) PTC+DIH (f) Diff

Figure 7.10: Comparison between the corrections applied by PTC+DIH, and the mask-based DIH-
M models for multiple variants of the same image. a) input composite, b) ground truth image c)
output of DIH-M, d) Difference heatmap between output of DIH-M and ground truth, e) output of
PTC+DIH, f) Difference heatmap between output of PTC+DIH and ground truth. In difference
heatmap images, red indicates a positive difference (i.e. the harmonised region is brighter than the
corresponding input region), blue indicates the opposite.

in the COCO-Exp dataset with areas ranging 20-40% of the image size, the PTC+DIH
model achieves lower errors than the mask-based DIH-M baseline. This illustrates the
impact of the PTC being conditioned on only exposure shifts, but also indicates that
these features are useful when transferred to a different type of transformations, such as
those in iHarmony. The performance of the proposed model is also illustrated for images
from the authentic composite image dataset proposed by Xue et al. (2012) and mentioned
in previous chapters. Examples of this can be seen in Figure 7.12.

7.8 Discussion

The results of both experiments indicate that, in the context of image harmonisation,
perceptually-based detection of harmonisation targets can be used to remove the
requirement for input object masks. While the proposed approach does not outperform
baseline mask-based approaches, it performs significantly better than the state-of-the-art
baseline when trained with no input masks. Furthermore, despite the PTC being only
conditioned on exposure shifts, its combination with the DIH model improves results on
both datasets, suggesting that the perceptually-based features learned by the PTC are
useful to the harmonisation task. This is reinforced by the fact that even combining PTC
and DIH features in latent space affords a modest improvement over the baseline. Some
bias towards exposure shifts is nonetheless noticeable - the largest improvements across
both datasets occur for achromatic objects (e.g. the sink or toilet in Fig. 7.9). This could
be addressed by training the PTC on a wider range of local transformations. The problem
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Figure 7.11: Examples of failure cases. a) input image b) ground truth c) DIH-NM result d)
Difference image between input and output for DIH-NM e) PTC+att+DIH result f) difference
image between input and output for PTC+att+DIH g) PTC+DIH result h) PTC+DIH difference
image. In difference heatmap images, red indicates a positive difference (i.e. the harmonised region
is brighter than the corresponding input region), blue indicates the opposite.

iHarmony
Object Size 0-10% 10-20% 20-30% 30-40% 40-50% 50-60% 60-70% 70-80%

DIH-M 33.0 116.1 206.5 335.05 456.2 485.48 484.58 705.12

MSE orig. 47.1 235.02 449.84 642.75 1170.31 1222.97 1151.83 1752.12
DIH-NM 50.73 192.22 360.98 497.42 919.29 1058.39 888.11 1534.94
PTC+att+DIH 50.36 190.2 370.65 462.72 884.22 1001.85 933.02 1659.24
PTC+DIH 45.02 150.04 311.72 359.99 623.03 895.33 720.82 1464.62

COCO-Exp
Object Size 0-10% 10-20% 20-30% 30-40% 40-50% 50-60% 60-70% 70-80%

DIH-M 73.74 401.55 655.11 785.35 927.68 1042.68 1119.19 1129.01

MSE orig 86.11 524.29 878.42 1131.53 1503.27 1802.57 2072.08 2097.13
DIH-NM 94.3 502.63 828.69 1045.05 1373.97 1661.55 1876.75 1958.01
PTC+att+DIH 93.26 492.65 802.24 986.49 1271.15 1510.16 1684.99 1806.24
PTC+DIH 82.35 410.08 647.13 778.76 946.99 1084.28 1240.54 1295.38

Table 7.3: Average MSE on the iHarmony and COCO-Exp datasets for each of the evaluated
models, grouped by area of harmonised object as a fraction of image size. MSE orig is the MSE
between unharmonised inputs and ground truth. Bold values indicate the lowest error for each
object size, given no mask input. DIH-M model shown for reference.
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(a) Input (b) Output (c) Abs Diff

(d) Input (e) Output (f) Abs Diff

(g) Input (h) Output (i) Abs Diff

(j) Input (k) Output (l) Abs Diff

Figure 7.12: Examples of authentic composite images from Xue et al. (2012) processed using the
DIH model. Leftmost images illustrate the input, middle images illustrate harmonised output,
whereas rightmost images show normalised absolute difference image, indicating image locations
harmonised by the model. No input masks are supplied.
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of object size and its impact on harmonisation accuracy is likely connected to the fact
that larger objects tend to contribute to the MSE more, compared to smaller objects. The
MSE for a small object requiring a 0.5 stop exposure shift will be lower than that of a
larger object requiring the same shift. To alleviate this, when training with input masks,
the MSE can simply be scaled by the mask size Sofiiuk, Popenova and Konushin (2020),
however with no input mask, estimation of target object area becomes non-trivial and
presents and interesting direction for further research.

Not unlike the original DIH implementation, the proposed end-to-end model can suffer
from gradient artefacts along mask edges, particularly when the initial error to be corrected
is large. This issue could be addressed by adopting masked convolutions and utilising self-
attention mechanisms, as in Cong et al. (2020) or by explicitly incorporating gradient
information, as in Wu et al. (2019). While these issues will be addressed in future work,
the advantages of the proposed model demonstrated in this work still hold in the context
of image harmonisation with no input mask. Following arguments from Chapter 6, the
results confirm that in order to improve image harmonisation performance, particularly in
scenarios where input masks are not available, detection of target regions for harmonisation
should leverage intermediate representations, equivariant to the transformations of the
input to be harmonised. Input masks used in state-of-the-art harmonisation algorithms
mimic this role - they encode the presence and location of all input transformations
requiring harmonisation as a local binary feature, thus receiving a form of an extra
supervisory signal. The results presented here show that explicitly incorporating the
artefact detection paradigm into the harmonisation process can be beneficial, while
alleviating the requirements for presence of object masks at inference time.

7.9 Conclusions

This chapter has presented and evaluated a novel method for performing image
harmonisation without the need for input object masks. The proposed approach leverages
two state-of-the-art models - an artefact detector and a harmoniser - which, when
combined, produce competitive results to mask-based models. A two-stage evaluation
of the original pre-trained models is first performed, and based on evaluation results,
this is extended to a custom end-to-end model in two variants, trained from scratch
on the challenging iHarmony dataset. Both variants of the proposed end-to-end model
are found to outperform the baselines, when evaluated on two different datasets. These
findings indicate that information about location and magnitude of composite artefacts
can be useful in improving the performance of existing compositing and harmonisation
approaches. This is motivated by illustrating that ground truth object masks commonly
used in harmonisation algorithms essentially substitute the process of detecting local
transformations and inconsistencies requiring correction. Accordingly, the results show
that the requirement for provision of object masks for such algorithms can be relaxed or
removed entirely by the explicit combination of composite artefact detection with their

209



correction. This provides a basis for investigation in future work of joint modelling of both
the detection and correction of composite image artefacts, e.g. under a multitask learning
paradigm, where a joint latent representation is conditioned both to be equivariant with
respect to input transformations and to encode the structure of the image. In such a
scenario, input masks may be used during the training stage, but would not be necessary
during inference.
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Chapter 8

Conclusion

8.1 Overview

This thesis has investigated modelling of human perceptual sensitivity in the context of
improvement of image composite realism. This was accomplished based on work in three
key stages.

First, in Chapters 2 and 4, a formulation of image composite artefacts as local image
transformations was developed, and psychometric methods were adopted to model
subjective observer sensitivity to these transformations. This was complemented in
Chapter 5 by an investigation into the spatial and temporal allocation of overt visual
attention by observers performing composite realism assessment in the presence of different
transformation types.

Second, to investigate the generalisability of these psychometric models, in Chapter 6
deep learning techniques (introduced and reviewed in Chapter 3) were adopted to learn
feature representations of input images equivariant to local exposure transformations.
Using transfer learning techniques, these models were then adapted to classify pixels of
input images, based on human perceptual characteristics, represented by the proposed
empirical psychometric models.

Finally, the trained models were evaluated in a task representing the overarching goal of
this thesis: composite image harmonisation. In these experiments, the proposed models
produced improved results over baselines, indicating the benefit of the techniques proposed
in this work.

As a whole, this thesis presents a novel and practical framework for perceptual modelling
of JNDs as a function of local transformations, or distortions, applied to natural images.
By adopting synthetic data generation methods and learning-based techniques, empirical
psychometric models generated for a relatively small dataset can be extended to novel
image content, without the need for collection of additional perceptual data. Importantly,
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the deep learning models developed using this framework remove the need for explicit
indication of target objects in harmonisation models and outperform state-of-the-art
baselines.

The following sections detail and discuss the findings and contributions of this thesis, as
well as outlining potential limitations and future work. For clarity, these are discussed on
a chapter-by-chapter basis.

8.2 Summary of Findings

8.2.1 Modelling Human Assessment of Image Composite Realism

Defining Image Composite Realism

Chapter 2 discussed fundamental properties of human vision in the context of detection of
visual inconsistencies, or distortions. Specifically, many similarities between the problem
of image composite realism and image quality assessment were highlighted, placing both in
the wider context of subjective visual property modelling. Visual realism in the context of
image composites was found to fit the concept of photorealism (Ferwerda, 2003). According
to this definition, an image is considered photorealistic when it elicits the same visual
response as the corresponding real scene. Deviations from this state of affairs result
in a decrease in photorealism, provided observers can detect them. Both subjective
image quality and photorealism were found to incorporate detection of particular visual
properties or inconsistencies and their mapping to a subjective score.

A review of prior work indicated that subjective evaluation methods have been effective
at modelling subjective visual properties with a high degree of accuracy. For example,
psychometric methods have been successfully used to model subjective realism as a
function of a particular image feature, such as shadow softness (Rademacher et al., 2001)
or local transformations (Xue et al., 2012). However, this is at the cost of significant
effort required to measure subjective human responses under appropriately controlled
experimental conditions, which makes generalisation of these models to new image content
challenging.

Objective methods, such as the error sensitivity framework (Wang, Bovik and Lu, 2002),
structural similarity framework (Wang et al., 2004), natural image statistics (Sheikh, Bovik
and Cormack, 2005), or various perceptual visual quality metrics such as the VDP Daly
(1992) addressed some of these issues. They were shown to be practical approaches to
incorporating knowledge about the HVS into reusable algorithms, which could be applied
to a broad range of visual stimuli. This was accomplished through extraction and weighted
pooling of different image features, calibrated to correlate with subjective human opinion.
However, these approaches were often shown to be complex to design and expensive to
adapt to novel tasks or features, as well as not transferring well to complex, real-world
stimuli, such as natural images.
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Consequently, this chapter defined assessment of visual realism in the context of image
composites as detection of visible local inconsistencies and their subsequent pooling into
a visual realism rating. While the set of possible inconsistencies was found to be vast, it
was also shown to follow particular trends when considering differences between objects
and scene in image composites. These include statistical differences in the distributions of
low level image properties, such as luminance, colour or contrast (Xue et al., 2012), as well
as physical properties of the scene, such as the directionality (Ostrovsky, Cavanagh and
Sinha, 2005) and colour (Xue et al., 2012) of the illumination, surface properties (Pardo,
Suero and Pérez, 2018), reflections (Cavanagh, Chao and Wang, 2008) and semantics
(Biederman, 1981).

Based on this information, psychometric techniques for the modelling of visual realism as
a function of local image transformations were developed in subsequent chapters.

Empirical Modelling of Composite Realism

Chapter 4 proposed a novel methodology and empirical models of composite realism, based
on using JNDs to define thresholds at which transformations applied to natural images
become visible to an average observer. This was achieved by measuring observer sensitivity
to local image transformations under a 2AFC paradigm. Observers were required to
distinguish between original versions of an image and ones with local transformations
applied to a known object. This sensitivity was then measured across a range of 11
transformation magnitudes, 165 scenes and 75 observers and expressed as group JNDs. In
order to allow for controlled measurements, synthetic image composites were developed
by applying local exposure, contrast and correlated colour temperature transformations
to object regions in natural images. In this context, using authentic image composites, for
which no realistic ground truth version were readily available, would have not allowed for
accurate measurement of JNDs.

In line with Wichmann and Hill (2001a), sigmoidal functions were found to provide a
good fit to both group and individual realism ratings as a function of transformation
magnitude. Subsequently, group JNDs were extracted by pooling responses for a particular
transformation magnitude across observers and scenes. A review of the parameters of the
fit models indicated that exposure and CCT transformations were detected most reliably
by observers, while contrast transformations, particularly its reduction, yielded higher
lapse rates, indicating a larger proportion of observers could not reliably distinguish
between transformed and original images. Qualitative evaluation of these group JNDs,
accomplished by visualising them as transformations applied to objects in natural images,
showed that context and allocation of visual attention may play a significant role in how
visible such transformations are to the average observer. Furthermore, transformations
resulting in plausible results or applied to semantically ambiguous objects often do not get
readily detected, indicating further impact of context. Additionally, as shown previously
by Xue et al. (2012), observers consistently displayed a degree of tolerance to certain
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transformations, such as contrast or CCT shifts, particularly at low magnitudes. Increased
tolerance to exposure and contrast shifts applied to objects near visible illumination sources
was also observed in the qualitative evaluation, providing further indication of nonlinear
influence of local context.

Overall, this chapter illustrated that the proposed methodology to modelling average group
JNDs based on error visibility and transformation magnitude is viable, resulting in well-
fit empirical models and interpretable perceptual threshold measures. Equally, several
additional questions were raised by the obtained results, particularly concerning the impact
of visual attention, either due to task, scene content, or observer knowledge about object
identity, on the resulting JNDs.

Allocation of Visual Attention

Chapter 5 undertook further investigation into how the realism assessment task is
performed by observers. Specifically, a gaze-based study focusing on the spatial allocation
of visual attention was carried out. A 2×2 factorial design was used, evaluating the impact
of transformation feature type (exposure and CCT) and prior knowledge of object identity
on gaze metrics and resulting subjective realism ratings across 4 groups of observers.

The results illustrated that observers relied primarily on the target object region when
assessing realism, regardless of whether prior knowledge regarding the identity of the
object was provided. This highlighted the importance of the appearance of the object and
its immediate surroundings to the subjective ratings of its realism. Qualitative analysis
of fixation maps also illustrated their similarity to saliency, or conspicuity maps. The
relative direction of differences in gaze metrics between groups with and without prior
object knowledge persisted across the transformation type condition, suggesting that for
both CCT and exposure, the provision of prior object knowledge to observers results in
comparable changes in visual behaviour. Specifically, a reduction in visual search and
scene analysis, and an increase in focus on the target object. This was illustrated by
relative decreases in total fixation counts, and increases in their duration. Also, overall
response times were found to be shorter when observers were aware of the identity of
the object. Interestingly, no significant realism rating differences were found between
observer groups with and without prior object knowledge. This is despite the existence
of significant differences in gaze metrics between the groups, suggesting that visual search
plays an important role in locating composite artefacts, but not necessarily their subjective
rating. Similarly, in line with Yarbus (1967), task-related differences in gaze metrics were
observed. Specifically, significant differences in the proportion of fixations on target objects
were found between presentations of reference and test stimuli.

Despite being highly correlated, the difference in realism ratings across the local
transformation type factor was more pronounced compared to the prior object knowledge
factor. This confirms prior findings that different image features and distortions may

214



require individual perceptual models, e.g. as implemented in the work of Xue et al.
(2012).

At a high level, this chapter explored and illustrated the impact of image composite
distortions on the spatial and temporal allocation of visual attention. It showed that under
the experimental conditions outlined, allocation of visual attention and prior knowledge
of the object does not impact subjective realism ratings significantly. Additionally, this
chapter illustrated that human fixation maps in this task resemble object-centric saliency,
or conspicuity maps - indicating the location of transformations, or distortions. This
finding was crucially exploited in Chapter 6 in order to model observer responses.

8.2.2 Learning the Observer Function

Machine Learning for Perceptual Modelling

Chapter 3 focused on introducing the background on fundamental machine learning
concepts, as well as discussing recent work in learning-based function approximation
using deep convolutional neural networks. A number of existing approaches relying on
deep learning to approximate perceptual functions were then reviewed, highlighting the
architectures, optimisation strategies and datasets used to train such models. Specifically,
fully convolutional, image-to-image networks were found suitable for approximating
perceptually-informed functions such as saliency prediction (Zhao et al., 2015; Li and
Yu, 2015), similarity metrics (Zhang et al., 2018b), image quality (Bosse et al., 2017)
or scene understanding (Long, Shelhamer and Darrell, 2015). This research illustrated
that such perceptual functions, mapping input images to representations of subjective
visual properties, can be approximated from empirical data and generalised to novel image
content.

Transformation Equivariant Representations for Perceptual Modelling

Building on findings from Chapters 2-5, Chapter 6 developed a novel methodology for
approximation of the realism assessment function performed by observers. This was
accomplished by first modelling JNDs with respect to synthetic composites affected by
local exposure transformations using the experimental methodology developed in Chapter
4. However, in this study, the JNDs were measured separately for each scene, as opposed
to being averaged across scenes, in order for the impact of scene context to be encoded in
the subjective responses.

Together with the analysis of visual attention carried out in Chapter 5, this allowed
for the formulation of the problem as a supervised learning task - mapping from a
synthetic composite image to an output transformation map describing the presence of
local exposure transformations above the perceptual thresholds defined by the JNDs. This
allowed for the application of convolutional neural network techniques discussed in Chapter
3 to the problem. However, due to the relatively small size of the JND dataset, transfer
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learning techniques were required to first learn a feature representation equivariant to
the transformations present in the input composites, before fine-tuning the model on
the empirical JND data. This was accomplished by adapting a technique proposed by
Zhang et al. (2019), which learns to predict the parameter of transformations applied to
an input image. This approach was extended to predict not only the parameter of the
transformation, but also its location in the image, thus allowing for prediction of local
transformations.

Consequently, a self-supervised approach could be adopted to first learn this feature
representation. This was done by sampling transformation magnitudes from a distribution,
applying them to images and training a model to regress the local parameter of the
transformation, given both the original and transformed images as input. After training to
convergence, the encoder of this model was then extracted and used as a feature extractor
in a pixel-wise classifier fine-tuned on the JND dataset to predict whether each pixel of an
input image contains the effects of suprathreshold exposure transformations. The resulting
model was found to predict image-wise JNDs with an average error of 0.11 exposure stops.
These findings illustrated that, provided a representation equivariant with respect to a
specific transformation can be learned, using a small perceptually-conditioned training
set is sufficient to approximate the function performed by an observer, or group thereof,
performing a local transformation detection task. As many distortions affecting composite
images can be defined in the context of transformations, this method can be expanded to a
range of other transformation types. Finally, the model was shown to localise composited
objects in authentic, rather than synthetic, composite images, prompting evaluation in a
wider application context.

8.2.3 Application to Harmonisation

Chapter 7 presented an application of the model developed in Chapter 6 to the problem
of composite image harmonisation. This was accomplished by combining the final
model trained on JNDs, with a state-of-the-art image harmonisation network. In this
arrangement, the model from Chapter 6 served as a perceptual detector - indicating areas
requiring harmonisation, based on human perception and removing the need for specifying
input object masks. After an initial two-stage evaluation performed on pre-trained, off-
the-shelf versions of the models, a full end-to-end model was designed and trained from
scratch, using the iHarmony training set (Cong et al., 2020). The proposed novel no-
reference end-to-end harmonisation model was found to outperform no-reference versions
of baseline models across two harmonisation datasets, indicating the benefit of utilising
perceptually-conditioned features for this task. To the author’s knowledge, this is the first
end-to-end harmonisation system explicitly modelling perceptually-informed detection of
composite artefacts, as well as their harmonisation.
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8.2.4 Broader Impact

Viewed as a whole, this thesis has proposed a general framework for modelling visual
realism of image composites as a function of local transformations approximating common
composite artefacts. Through reliance on signal detection theory and psychometric
methods, this framework can be easily adapted to detect different types of relative
transformations in natural images, in alignment with subjective perception of realism.
The impact of such transformations can also be modelled with respect to subjective
properties other than visual realism, provided they are appropriately defined to observers
participating in experiments.

At a fundamental level, this was accomplished by formulating the subjective realism
assessment process as a function performed by observers, which takes an image composite
as input and outputs a map describing the local magnitude of some perceptual property.
This function can then be measured directly for a relatively small set of images and
approximated directly in the image domain using self-supervised and transfer learning
techniques. This allows for practical application of such models to novel stimuli, enabling
broader application. This was evidenced by application of the framework discussed in this
thesis to the development of a deep learning model, capable of improving performance
over baselines in the perceptually-informed task of image harmonisation.

Another benefit of the proposed methodology is its modular nature - depending on the
application, the psychometric JND models, training data, neural network architectures or
optimisation strategies can be updated. For example, the same transformation equivariant
representation can be used as a basis for fine-tuning on JNDs of naive and expert viewer
groups. This is possible because the self-supervised training process of this representation
does not involve any human-perceptual bias - this is only introduced in the fine-tuning
stage. This is visualised in Chapter 1, Figure 1.5, which provides an overview of the
framework developed in this work.

8.3 Limitations and Future Work

While the models proposed in this thesis have been shown to be improve image
harmonisation results, several considerations and limitations should be addressed in future
work.

8.3.1 Data Collection and Perceptual Models

While the proposed methodology reduces the need for collection of empirical data, it
does not remove it completely. Consequently, development of empirical perceptual models
remains a effort-intensive element of the proposed framework. Future work should focus
on assessing the impact of the size and characteristics of the perceptual training dataset on
the accuracy of resulting models. This could allow for a reduction in the number of images
for which JNDs need to be measured. Another consideration relates to the impact of the

217



type of transformations the model should detect and the corresponding requirement for
training data. It can be expected that for complex or subtle transformations, adjustments
to the perceptual data collection and modelling process may have to be made depending
on average observer performance. As such, more subjective data collection would likely be
necessary before training this model to detect novel transformations. The benefit of the
presented approach, however, is that much of the computationally-expensive training of
the detection models can be accomplished without subjective perceptual data, in the pre-
training stage. Similarly, expansion of the range of transformation parameters the model is
sensitive to, is only bound by the perceptual fine-tuning stage. Here, more perceptual data
would need to be collected to cover the wider range of parameters, in order to update the
perceptual model. The pre-training stage can be adapted by simply adjusting the data
generation parameters. In practice, this decoupling of feature learning and perceptual
fine-tuning thus affords flexibility when applying this model to other related tasks.

8.3.2 Model Optimisation, Scalability and Transformation Types

In order to allow for controlled evaluation of the proposed approach, the models
developed in this thesis focus on a select few transformation types. While this was a
necessary constraint, it potentially limits wider applications of proposed models, without
additional fine-tuning. As the transformation equivariant representation learning task
does not require perceptually labelled data, future work should focus on training such
representations with respect to a much wider range of local transformations and evaluating
the impact of such conditioning on performance in auxiliary tasks. Since training labels
can be generated automatically for this part of the process, improving the learned
representation would require arguably less effort compared to collection of new perceptual
data.

With frequent advances in the field of DL architectures, potential incremental
improvements to the accuracy and efficiency of the proposed models could be made by
utilising novel architectures. For example, weakly-supervised methods, such as few-shot
learning, provide alternative approaches for scenarios where training data is very limited.
Throughout the process of writing of this thesis, many novel, general-purpose deep learning
models have achieved state-of-the-art results on challenging datasets. While it was outside
of the scope of this work to perform a large scale evaluation, this remains an interesting
direction for future work, and the modular design of the proposed methodology certainly
supports this.

Finally, the efficiency of the deep learning models developed in this thesis could benefit
from application of model distillation techniques (Polino, Pascanu and Alistarh, 2018),
allowing for a reduction in the number of model parameters. While the large number of
parameters can be beneficial for training on large, synthetically-generated datasets, it has a
negative impact on training and inference times, resulting in longer iteration times during
experimentation. Any future work, attempting to extend this model, should consider first
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applying distillation techniques.

8.3.3 Application to Other Tasks & Alternative Approaches

The experiments presented in Chapter 7 illustrated that the proposed models can
improve state-of-the-art harmonisation results. However, potential improvements to
generalisability could be afforded by focusing efforts on the transformation equivariance
of the representation with respect to a wide array of local transformations. As suggested
by Bengio, Goodfellow and Courville (2017) and confirmed in Chapter 6, this property
is fundamental to accurate modelling of human perception in this context, allowing
for separation of features of the same image affected by different transformations in
feature space. Provided these properties are well encoded, sub- and supra-threshold
classification could be accomplished by using linear classifiers. Ultimately, such a feature
representation should learn to encode effects of transformations in natural images. Rather
than attempting to classify specific types of transformations, it should describe statistical
deviations from distributions of pixels found in natural images. Thus, the more general
this feature representation is with respect to encoding various local transformations, the
simpler the task of perceptual tuning should become. However, in order to achieve
this, future work should address scalable, self-supervised methods of learning such
representations, while attempting to minimise the number of required perceptually-
annotated training examples. In addition to this, several novel approaches to this problem
could be adopted. This includes leveraging pre-trained discriminator networks from large-
scale GANs for image synthesis, such as the BigGAN (Brock, Donahue and Simonyan,
2018), and leveraging their deep features as descriptors, following the methodology
described by Zhang et al. (2018b). Furthermore, recent developments in computational
cognitive neuroscience (Mishra and Majhi, 2019) and the increasing interplay with deep
learning (Kietzmann, McClure and Kriegeskorte, 2019) provide interesting, alternative
approaches to the problems tackled in this thesis. Development of biologically-plausible
computational models of human vision, not unlike those described by Marr (1982), would
enable a more fundamental understanding of the impact of various image distortions.
Such knowledge would largely simplify the parameterisation of perceptual models, as well
as allow training of deep networks with biologically-inspired, rather than statistically-
approximated, perceptual losses.

8.4 Final Comments

This thesis has investigated the use of machine learning techniques to learn and generalise
psychometric models of subjective perception of visual realism in composite images. This
was achieved by first using psychometric frameworks in order to empirically model human
perception of realism in synthetic image composites, in the presence of controlled local
image transformations. Both this experimental methodology and the models were then
validated in the context of deployment of visual attention, before being employed to
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collect a set of image-wise empirical perceptual thresholds, used as training data for the
machine learning models. The following work focused on developing techniques to train
convolutional neural networks to detect local exposure transformations in a self-supervised
manner, before fine-tuning the resulting transformation-equivariant representation on
the empirical perceptual threshold data. The resulting model was then applied to an
image composite harmonisation task and compared against existing approaches, achieving
comparable results and removing the requirement for object segmentation data to be
provided to the network at inference time. Finally, aside from the datasets and developed
models, this work proposed a methodological framework for learning to automatically
detect local artefacts in images, based on generalisation of psychometric models through
leveraging data synthesis and machine learning techniques.
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Figure 1: An example of the stimuli used in the experiments. Top row: exposure scaling from 0.1 to 1.9; Middle row: contrast scaling from
0.43 to 2.27; Bottom row: CCT offsets from -200 to +200 mired).

ABSTRACT

Image composites are combinations of image elements from differ-
ent sources, often combined in a manner to give the appearance of a
single, coherent image. This work assesses the impact of low-level
image feature offsets on observer response with respect to realism
of image composites. The response to selected features, namely
exposure, contrast and Correlated Colour Temperature (CCT), is
evaluated in a series of 3 experiments, each employing 25 human
observers. A total of 10890 data points are analysed, 3630 for each
experiment, and psychometric functions are fit to this data in or-
der to parametrise and quantify the relationship between human re-
sponses and the amount of disparity between object and scene. Av-
erage thresholds and their confidence intervals for each of the image
features are then presented and discussed, notably indicating a de-
gree of observer variance in realism responses, particularly in the
presence of negative contrast disparities. Exposure, as well as CCT
offsets are found to be more readily detected, the latter also con-
tributing to some false positives at high offsets, due to illumination-
reflectance ambiguity. The resulting thresholds and confidence in-
tervals can be utilised in creating realistic composites, as well as
understanding the impact of different features on observers’ per-
ception of composite realism.

Keywords: Composite, realism, subjective quality, object, scene,
disparity.

Index Terms: Computing Methodologies [Computer Graphics]:
Graphics systems and interfaces—Perception;

1 INTRODUCTION

An image composite is a single image made up of two or more
source images, or elements thereof [1]. The aim of compositing
is achieving a visually-seamless and coherent combination of the

∗e-mail: alan.dolhasz@bcu.ac.uk

component image parts - often an object and background scene.
Today, composites are used in many image-related fields, from pho-
tography [2], through visual effects (VFX) in film [3], to Mixed and
Augmented Reality (MR & AR) [4].

In AR, both optical and video see-through head-mounted dis-
plays (HMDs) must deal with matching the visual properties of
the real world, as it is presented to the viewer, with those of aug-
mentations - here analogous to composites. In the case of video
see-through HMDs, the properties of the camera capturing the real
world affect the appearance of the image, as seen by the viewer. In
the optical see-through scenario, such disparities are even greater,
due to the inherent issues with field of view, resolution and contrast
[5]. Due to these implicit disparities, it is important to understand
the effect they can have on viewers’ quality and realism perception.
Such issues are notably easier to deal with in traditional, screen-
based compositing, where the scene and augmentation share a sin-
gle display. Here, disparities can be minimised by adjusting a range
of low-level image features (for example luminance, contrast or sat-
uration), either in a time-consuming, manual manner [1], or using
automated computational approaches [6, 7]. Furthermore, the final
quality is influenced by the properties of the object, environment
(scene), display device and the individual differences between ob-
servers. These issues have been organised and detailed by Kruijff
et al. [8].

Composite improvement usually relies on estimation and match-
ing of image-based features [7, 9, 10, 11], recreating and applying
scene illumination conditions to the object [12, 13, 14, 15], match-
ing texture-based features [16] and improving the appearance of
edge artifacts and seams [17]. Perceptually-based approaches have
also explored the assessment of subjective properties, to help im-
prove or classify certain aspects of images. These include realism
[18, 7], illumination direction [19] and aesthetic analysis of pho-
tographs [20].

While these composite improvement methods have become valu-
able tools, none have explicitly quantified the human response to
image feature disparities - the mismatches between object and scene
in composites. The manner in which the transition from realistic to
unrealistic occurs for an observer, and the factors that influence it,



Figure 2: Examples of images used in the experiments. The binary masks in the top-left corner of each image show the object chosen for
processing.

are not a straightforward processes to understand. Knowledge of
observer response in the context of image-based feature disparities
would allow for compositing tools and matching algorithms to op-
erate in a more optimised manner - focusing on correcting errors
most perceivable to observers.

This work explores how object-scene disparities in low-level
image features affect observer response to composite realism. A
dataset, methodology and results are presented, showing tolerances
and subjective thresholds of disparity visibility. Exposure, contrast
and CCT disparities between objects and scenes are tested. Psycho-
metric functions are then derived, to visualise response to changes
in image features of the object, versus the scene.

The rest of the paper is structured as follows: Section 2 reviews
approaches to quality estimation and subjective threshold quantifi-
cation using perceptual data. Section 3 presents the methodology,
including test design, dataset creation, participant information, ex-
perimental conditions and data analysis. Section 4 summarises the
results and describes observer tolerances for each of the parame-
ters under test. Finally, Section 5 implements these thresholds, dis-
cusses findings, reviews the impact of the dataset on the results and
suggests next steps. The paper is concluded in Section 6.

2 BACKGROUND & RELATED WORK

Human judgements play an important role in application-based so-
lutions. Aydin et al. [20] implemented subjective ratings as a
method of tuning algorithms for automatic aesthetic rating of pho-
tographs. Perceptually-based models are also used in computer
graphics to model visual adaptation and improve tone reproduc-
tion [21], correct properties of virtual objects in interaction tasks
[22, 23], quantify image quality independent of dynamic range [24]
or adapt rendering techniques to prioritise aspects most noticeable
by people [25]. In order to construct such models, an understanding
of the related visual processes must be developed.

To accomplish this, traditional psychophysical studies of vision
often use abstract stimuli in a heavily-controlled environment, al-
lowing for reproducibility, mathematical description, systematic
variation and modelling [26]. Some argue that experimental results
obtained under these controlled conditions do not generalise well to
everyday visual perception in the complex, cluttered environments
encountered in the real world [27, 28, 29]. Thus, methods relying
on subjective quality ratings offer more flexibility, especially in the
context of complex scenes, allowing to generalise results to a wider
set of images. However, this comes at a cost of accuracy. Bieder-
man, for example, [30, 31] uses an approach of violation detection
in complex scenes as a method of quantifying the impact of seman-
tic and structural scene disparities.

Subjective quality, or realism measurements involving compos-
ites and real scenes have been carried out by Xue et al. [7], to

show that offsetting image features of composites away from an
‘ideal’ state, caused decreases in subjective realism ratings, which
followed a Gaussian distribution. Xue used a dataset of 20 natural
images, offset both foreground and background properties and used
a Likert scale. The algorithm designed by the authors performed
well at improving subjective composite realism. However, the re-
sults of the perceptual study are difficult to generalise, due to the
limited number of images used.

Recently, Tan et al. [32] carried out work assessing visibility of
lighting inconsistencies in outdoor scenes. Their study was con-
sistent with previous research by Lopez-Moreno et al. [13] and
Ostrovsky et al. [19], specifically regarding the low sensitivity of
human observers to changes in illumination direction. An exception
to this were situations where the illuminant was directly behind the
camera. In these cases observers found it easier to detect inconsis-
tencies. Furthermore, the results highlight the significant impact of
scene content and structure on observers’ ability to detect inconsis-
tencies. Contrary to our work, this study addresses outdoor scenes,
where the sun-sky illumination model is simpler, compared to an
indoor scenario, where illuminant locations and properties (such as
intensity and colour temperature) are less constrained. This makes
it difficult to make direct comparisons between results.

3 MATERIALS & METHODS

The goal of the work presented here is to determine the response
of human observers to feature offsets between object and scene.
In order to do this for each parameter, the visibility threshold
measurement method [33] and experimental conditions outlined in
ITU Recommendation BT.500-13 [34] are adopted. This approach
makes use of 2AFC tasks on a dataset of indoor scenes.

3.1 Feature Selection
The image features under study were exposure, contrast and Cor-
related Colour Temperature (CCT). These features are commonly
associated with images from digital cameras and they model image-
based differences: exposure simulates a difference in illumination
intensity, contrast models dynamic range and CCT models illumi-
nant chromaticity differences.
Exposure changes are implemented by converting to HSV col-
orspace and scaling of value channel of the resulting image, as in
Equation 1. The image is then converted back to sRGB for display.

V ′(x) = aV (x,y) (1)

Here, a is a scalar value satisfying 0.1≤ a≤ 1.9.
Contrast is adjusted around the middle gray level, using a point op-
erator, threshold-based algorithm on the value channel of the HSV
image [35]. The adjustment is applied to the input pixel luminance



V (x,y), yielding the contrast-adjusted output pixel V ′(x,y), as in
Equation 2.

V ′(x,y) = b(V (x,y)−0.5)+0.5 (2)

Contrast was scaled in the interval −0.43≤ b≤ 2.27.
CCT: The approach of Xue et al. [7] is used to define the im-
age transformations required to adjust CCT. The Robertson method
[36] is used to convert from CIELUV colour space to CTY (CCT,
tint and luminance). The conversion process is a table lookup and
interpolation on the Planckian locus [37]. CCT is an offset using
Equation 3.

CCT ′(x,y) =CCT (x,y)+ c (3)

Where c is an offset value applied to each pixel in CCT space,
whose values are restricted to −200≤ c≤ 200 mired.

3.2 Dataset
A dataset consisting of 165 manually-segmented images sourced
from the SUN Database [38] was created. The images were se-
lected manually to cover a range of indoor scenes and objects (see
Figure 2 for examples). The horizontal resolution of all images was
normalised to 500px, in order to fit three instances of each image
on a 1920x1080px display. By using natural images, segmenting
objects within them, and systematically altering image properties
of those objects, composites with controlled disparities can be sim-
ulated. This approach leaves original position [31], semantics [30],
illumination [12] and reflections [2] of the objects unchanged.

The processing applied consisted of either an offset (CCT) or
scaling (exposure, contrast) of one of the image features in the seg-
mented area of the image (representing an object). The severity of
the offset was selected from a range of 11 values, ranging from neg-
ative (e.g. reduction of contrast) through null (no processing, iden-
tical to original image) to positive (e.g. increase of contrast). Equal
distribution of stimulus levels across images in the dataset was also
ensured to minimise the bias induced by variation of image content.
Based on [7, 39], an unaltered photograph is an example of an ideal
composite, whereby the statistical properties of all image features
across the object-scene combination are in alignment.

3.3 Apparatus and Task
A self-calibrating Eizo ColorEdge CG247 monitor was used, cal-
ibrated to an sRGB profile under the experimental conditions (see
Fig. 3). Observers were required to view 165 image triples in a
2AFC setting. Each triple consisted of an original, unprocessed im-
age, a binary image indicating the location of the object and a pro-
cessed version of this image (see Fig. 3). Including object location
mitigates any lapses due to observers searching for the object, or
completing the task based on the wrong object. In alignment with
[34], the images were displayed on an sRGB middle gray back-
ground and observers were given 10 seconds to view each image
pair, followed by 5 seconds to cast their vote. The task was to indi-
cate which of the two colour images looked more realistic.

3.4 Experimental Design
A total of 75 observers, 33 female, mean age of 28.53 (SD=10.54),
were recruited from a population of university staff and students.
All observers were volunteers and were not rewarded in any way.
Observers were then evenly and randomly distributed into three
groups, one for each of the three experiments. The selection process
ensured that each user was presented with each of the 11 stimulus
levels (see Fig.1) an equal number of times. Experiment I used ex-
posure, II used contrast and III used CCT. Each experiment lasted
40 minutes on average, resulting in around 50 hours of testing.

Each observer was tested for normal or corrected-to-normal vi-
sual acuity and colour vision using a Snellen chart and Ishihara test,

Figure 3: An illustration of the experimental setup (left) and an
example of the test screen as seen in the experiments (right).

respectively. Observers with a visual acuity below 0.8, or those suf-
fering from colour blindness were rejected. Observers were posi-
tioned 50cm away from the display and asked to familiarise them-
selves with the instructions, informed that in each presentation, the
task would consist of selecting the most realistic image from the
two stimuli and that the stimulus range would vary throughout the
experiment. Finally, observers were given an opportunity to ask
the experimenter questions. During the experiment, observers were
given the choice between using the keyboard or the mouse to vote.

3.5 Analysis of Results
The analysis of experimental results follows the recommendations
of ITU Report BT. 1082-1 [33] and the procedures detailed by
Wichmann & Hill (2001) [40, 41]. First, proportions of correct re-
sponses per stimulus value are calculated. Here, “correct” is defined
as selecting the original image, as opposed to the processed image.
Psychometric functions (PFs) are fit to the resulting data points us-
ing the Psignifit toolbox version 3.0 for Matlab [42], which im-
plements the maximum-likelihood method presented in [40]. The
psychometric function ψ(x) describes the relationship between the
probability of a correct response p, and a given stimulus intensity
x. This is commonly denoted as in Equation 4:

ψ(x;α,β ,γ,λ ) = γ +(1− γ−λ )F(x;α,β ) (4)

In this study, F(x;α,β ) is a logistic function, as in Equation 5:

F(x;α,β ) =
1

1+ exp(− x−α
β )

(5)

The parameters α,β ,γ,λ of ψ define the shape of the curve, and
correspond respectively to its threshold, slope, lower (guess rate)
and upper (lapse rate) asymptote. The threshold α of this psy-
chometric function describes its displacement along the abscissa.
Specifically, it marks the stimulus intensity, for which the probabil-
ity of a correct response is the same, as that of a guess. Assuming
that γ = 0.5 and λ = 0, α corresponds to the stimulus value yield-
ing a .75 proportion of correct responses. The slope β describes
the steepness, or gradient of the function, at the threshold α . In the
2AFC scenario, the guess rate γ is fixed to 0.5, as the probability of
a correct guess in an n-alternative setting is 1/n. λ represents the
probability of a stimulus-independent lapse - an incorrect response,
despite an arbitrarily high stimulus intensity.

The fitting process is carried out using the Pool-then-fit method,
adopted from Wallis et al. (2013) [43]. Next, 95% confidence in-
tervals (CIs) for all parameters are found using the bias-corrected
and accelerated (BCa) bootstrap method [44], as suggested by Hill
(2011) [45].

4 RESULTS

This section details the results for the three experiments. A total
of 165× 25× 3 = 12375 data points were gathered. To ensure
that each image-offset combination was presented at least twice,
25 observers were shown 165 images, with each of the 11 offsets
being presented 15 times (25× 165 = 4125). Here, we report on
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Figure 4: Psychometric functions fitted to the data obtained for
positive (left) and negative (right) feature offsets of exposure (a &
b), contrast (c & d) and CCT (e & f). The solid curves represent

the fitted psychometric functions, dashed curves represent the 95%
CIs for threshold. Circles represent the original data. Parameters

for these psychometric functions can be seen in Table 1.

165× 11× 2 = 3630 data points from those collected for each ex-
periment, thus ensuring two responses for each image-offset com-
bination are included. Psychometric functions fitted to responses
for positive and negative feature offsets from Experiments I, II and
III can be seen in Figure 4. They reflect the measures of thresholds,
slopes and lapse rates obtained using the maximum-likelihood pro-
cedure and pooling method described in Section 3.5. Individual
threshold, slope and lapse rate measures for each experiment, as
well as the corresponding 95% confidence intervals can be found in
Table 1.
Exposure: The thresholds for positive and negative exposure off-
sets were 1.1953, 95% CI [1.1557, 1.2365] and 0.6852, 95% CI
[0.6572, 0.7154] respectively. Slopes for the threshold points ob-
tained were 0.1049, 95% CI [0.0695, 0.1495] for positive exposure
offsets and 0.0885 [0.0664, 0.1141] for negative ones. As Figures
4a and 4b and Table 1 show, the slope for negative offsets is steeper,
than that for positive offsets, indicating a narrower exposure offset
interval, in which the transition from realistic to unrealistic com-
posite rating occurs. Lapse rates were smaller for negative exposure
offsets, at 0.0093, 95% CI [0.0021, 0.0183], compared to positive
exposure offsets, at 0.0640, 95% CI [0.0440, 0.0834]. The lapse
rate estimates are larger for positive offsets, as seen in Table 1.

Exposure Positive Offset Negative Offset
Value 95% CI Value 95% CI

Threshold 1.1953 [1.1557, 1.2365] 0.6852 [0.6572, 0.7154]
Slope 0.1049 [0.0695, 0.1495] 0.0885 [0.0664, 0.1141]
Lapse Rate 0.0789 [0.0570, 0.0978] 0.0102 [0.0000, 0.0196]

Contrast Positive Offset Negative Offset
Value 95% CI Value 95% CI

Threshold 1.3249 [1.2590, 1.3905] 0.6678 [0.6433, 0.7527]
Slope 0.1451 [0.0955, 0.2070] 0.0426 [0.0250, 0.1601]
Lapse Rate 0.1139 [0.0852, 0.1394] 0.2070 [0.1532, 0.2404]

CCT Positive Offset Negative Offset
Value 95% CI Value 95% CI

Threshold 72.172 [60.071, 84.414] 84.339 [71.011, 99.538]
Slope 29.412 [20.063, 41.146] 32.053 [22.057, 46.216]
Lapse Rate 0.0756 [0.0360, 0.1029] 0.0756 [0.0215, 0.1099]

Table 1: Results, detailing threshold, slope and lapse rate estimates
for Experiments I (exposure), II (contrast) and III (CCT)

Contrast: The thresholds obtained were 1.3249, 95% CI [1.2590,
1.3905] for positive contrast offsets and 0.6678, 95% CI [0.6433,
0.7527] for negative ones. It was found that observers’ responses
for negative contrast offsets varied the most out of the experi-
ments. The lapse rate for those offsets was 0.2070, 95% CI [0.1532,
0.2404], while for positive offsets this was 0.1139, 95% CI [0.0852,
0.1394]. Slope values were 0.1451, 95% CI [0.0955, 0.2070] for
positive offsets, and 0.0426, 95% CI [0.0250, 0.1601] for negative
ones.
CCT: For CCT, thresholds obtained from these results are 72.172,
95% CI [60.071, 84.414] mired for positive CCT offsets and
84.339, 95% CI [71.011, 99.538] mired for negative offsets. Slope
values for these thresholds are 29.412, 95% CI [20.063, 41.146]
for positive CCT offsets and 32.053, 95% CI [22.057, 46.216] for
negative CCT offsets. Lapse rates across the positive and negative
offset conditions were similar, at 0.0756, 95% CI [0.0360, 0.1029]
and 0.0756, 95% CI [0.0215, 0.1099] respectively.

5 DISCUSSION

Overall, observer response followed a similar trend, as described
by Xue [7] - realism ratings decrease as the object-scene disparities
increase. While it is not possible to compare performance between
features, several noteworthy trends were found in the experimental
data obtained. Contrast offsets, particularly negative ones, yielded
highest lapse rate estimates and widest CIs (see Fig. 4c and 4d). A
possible explanation for this outcome can be sought in the work of
Marius ‘t Hart et al. [46], who shows that contrast is correlated with
attention, and decreases in contrast, particularly those applied to
object regions, reduce fixation and detection probability. The same
is not true for relative increases of contrast, which is reinforced in
the work presented here. Thus, when matching contrast of an object
to that of a scene, underestimating object contrast is likely to appear
less realistic to an observer than overestimating it, which will in turn
attract attention to that object, as found in [46].

Both CCT and Exposure covered the ranges adequately, receiv-
ing 100% correct responses for the highest offsets, in the case of
some observers. As CCT was offset in the perceptually-uniform
space of mired, the resulting PFs are expectedly similar. Addition-
ally, it seems that some extreme CCT offsets can be interpreted
as plausible differences in object reflectance, increasing the lapse
rates, while still appearing realistic. The variability in responses for
each offset level can be attributed to image and object changes. This
is consistent with studies by Tan [32] and Xue [7], who found sig-
nificant differences between the consistency of ratings for different
images, as well as across participants. Through the use of a larger
dataset of 165 images, our work also indicates how much variabil-
ity can be expected across general composites. This subjectivity of
realism judgements is further illustrated by the confidence intervals
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Figure 5: Applying the resulting visibility thresholds for negative (left column) and positive (right column) offsets of exposure (top row),
contrast (middle row) and CCT (bottom row). The original images are shown in middle columns.

in Figure 4.

The results of the experiments were also applied to a set of im-
ages from the original dataset, for purpose of visualisation. Objects
within these images were processed using the resulting threshold
values from Table 1 (in bold). These images can be seen in Figure
5 (for optimal quality, please view the digital version of the paper).
Here, each 3x3 image grid compares the effects of applying the neg-
ative (left column) and positive offset thresholds (right column) to
the original image (middle column). The rows from top to bottom
represent exposure, contrast and CCT, respectively.

The threshold images are visibly different from the originals, in-
dicating that realism responses were not a function of sheer impair-
ment visibility. Rather, they are a result of a more complex process,
based on inference and influenced by preference and properties of
complex scenes [28, 29]. This is also supported by the results of
[32], who found significant differences in observer responses for
the same disparities, across different scenes and objects. In some
cases, even in an ideal scenario where both the reference and a
modified version of an image are present, and the location of the
modified object is specified, observers often select the real image
as the ‘unrealistic’ one. The interesting question arising here is:
“How are these preferential responses influenced by the scene con-
tent?”. We aim to address this in our future work. Interestingly,
several observers reported difficulty in predicting the exact hue of
monochromatic objects, when CCT was offset. Another comment

included difficulty in judging correct exposure when objects were
nearby strong lights. These comments can be investigated formally
as part of further studies, which include comparison of psychome-
tric functions between controlled and uncontrolled environments,
extension of the study to include eye-tracking, as a measure of vi-
sual task difficulty, as well as implementing this experiment into
AR video see-through devices in order to ascertain changes to real-
ism thresholds.

6 CONCLUSIONS

This paper has presented the results of three experiments analysing
responses to image-based object-scene disparities. Resulting PFs
indicate generalised correspondences between feature offsets and
observer realism responses. A degree of subjectivity in terms of
realism ratings across observers and scenes was also observed.
While a detailed comparison with existing work is not possible
due to methodological differences, the results are consistent with
previous work in this area and provide a starting point for further
research into perception of realism. Thresholds indicating the
feature offsets at which observers transition from a ‘realistic’ to
‘unrealistic’ response and their confidence intervals have also
been provided, they are 0.6852 and 1.1953 for exposure, 0.6678
and 1.3249 for contrast and -84.339 and 72.172 for CCT. These
results can be taken forward to help create realistic composites.
Furthermore, while carried out in a controlled lab setting, the
methodology and results of this study are applicable to any AR/MR



scenario where the augmentation and scene share a single screen.
The image dataset and corresponding responses for
each experiment described in this paper is available at
http://dmtlab.bcu.ac.uk/composites.
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[POSTER] Composite Realism: Effects of Object Knowledge and
Mismatched Feature Type on Observer Gaze and Subjective Quality
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Figure 1: a) Images and segmentation masks used in our experiment (selected from [3]). Binary masks indicating object location are overlaid in the top left corner
(scaled down for display purposes); b) Example of reference image with binary mask indicating object location; c) Example of test image with processed object; d)
Setup of experimental apparatus. Observers positioned at a distance of 65cm from height-adjusted display. Eye tracker facing towards observer’s eyes; e) Examples
of heatmaps visualising average fixation maps across observers for a given image.

ABSTRACT

We report on the results of the first visual search and rating study
(N=60) evaluating human gaze when assessing the realism of im-
age composites. The effects of object identity knowledge and mis-
matched feature type on observers’ gaze and subjective realism
scores are studied. Gaze metrics used include: fixation count, fix-
ation duration, time and duration of first fixation on target object,
as well as area of interest similarity and inter-observer consistency.
Monte-Carlo-based techniques are used for analysis of the data ob-
tained. Results indicate that while knowledge of object identity
impacts gaze allocation and response times, it leaves subjective re-
alism ratings unchanged. We show that the type of mismatched
feature (correlated colour temperature vs exposure) has a signifi-
cant impact on fixation counts and durations. This study provides a
first step to utilising objective gaze metrics to better understand sub-
jective assessment processes and leads towards the development of
gaze-inspired compositing methods.

Keywords: compositing, eye tracking, subjective quality, realism

Index Terms: Human-centred Computing [Visualisation]: Empir-
ical studies in visualization; Computing methodologies [Computer
Graphics]: Graphics systems and interfaces—Perception

1 INTRODUCTION

Compositing is a process aiming to combine multiple images or
parts threreof into a seamless whole. Aside from fundamentally un-
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derpinning mixed and augmented reality (AR & MR), this process
is commonplace in a range of application domains, such as film or
visual effects. Depending on the application, compositing is either
carried out automatically, in real-time (e.g. when placing virtual
objects over a camera image of the real world in AR) or manually,
in an offline process (e.g. when compositing visual effects for film).

The aim of compositing is to create a believable, realistic result,
through minimising the noticeable disparities between the individ-
ual elements of the composite. However, in this context the re-
sulting realism is usually subjective and affected by the type and
severity of mismatches (e.g. illumination, orientation, semantics
etc.), as well as the final application context. As opposed to more
traditional uses of compositing, in AR and MR observers/users are
usually explicitly aware of the identity of the composited elements,
due to application and implementation differences.

A recent study [3] showed that subjective realism ratings for
composite feature mismatches tend to be inversely correlated with
their severity. Furthermore, scene context was shown to have a large
impact on some of the realism ratings. However, this work [3] does
not explain whether the prior knowledge of the identity of the mis-
matched object had an effect on subjective realism scores or how
the scene impacts the realism judgement.

Here, we present the results of the first gaze-based study assess-
ing the impact of object identity knowledge and type of mismatched
feature on observer gaze and subjective realism ratings. The rest
of the paper is structured as follows: Section 2 discusses relevant
background concepts and related work. Section 3 describes our
methodology, experimental setup and analytical methods. Section
4 summarises results and findings. Finally, Section 5 summarises
our conclusions and suggests future work directions.
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Figure 2: Offsets applied to segmented objects in test images. Top row: expo-
sure offsets (scalar multiplication); Bottom row: CCT offsets in mired (subtrac-
tion / addition)

2 RELATED WORK

2.1 Perception of Disparities

Human visual perception is driven by visual attention (VA). There
is evidence that perceptual thresholds can be affected by attention
[17]. Distortions or disparities in salient regions are more likely
to contribute to a lower subjective quality score than those in non-
salient regions [7]. Furthermore, in MR/AR applications, the iden-
tity of the augmented content is often known and thus VA is focused
on it. Subjective quality, or realism, of composite scenes is influ-
enced by noticeable mismatches between features of the inserted
object and those of the rest of the scene [3]. While some blatantly
disparate features can go unnoticed [2], other mismatches are no-
ticeable with minimal conscious effort [1]. Also, different types of
distortion impact subjective quality scores differently [22, 31].

The deployment of VA is facilitated by two distinct mechanisms.
Bottom-up VA relies on preattentive vision [29]. It is transient, in-
voluntary, largely driven by saliency and independent of task. Top-
down VA is deployed in a voluntary manner, is task-dependent and
driven by higher level factors, such as semantics, context, prefer-
ence, expectations, emotions and experience [32].

2.2 Eye Movement Metrics & Subjective Ratings

Human eye movements can provide objective information compli-
mentary to conventional subjective ratings, such as questionnaires
or rating scales [6]. As eye movements are paramount to acquisi-
tion of visual information while performing cognitive tasks, study-
ing how they are deployed can reveal visual strategy and features
relied upon during the completion of a task [4].

Examples of the use of gaze data in the assessment of visual
strategy and attention exist in both free-viewing conditions [32] and
specific tasks such as reading [23], visual search [19], objective
image quality metrics [14], decision-making [17], scene perception
[10] and subjective quality evaluation [27]. However, there are few
cases of gaze data used in subjective evaluation of visual realism.

Zangemeister et al. [33] used eye tracking to analyse visual
strategies when viewing abstract and realistic art. Ninassi et al.
[15] used objective eye metrics to study the impact of task on VA
in subjective image quality assessment through comparing empiri-
cal fixation maps. Elhelw et al. [6], studied the impact of different
image features on the perceived realism of real and synthetic bron-
choscopy images. Finally, Vu et al. [28] assessed the impact of
common global image distortions, such as blurring, noise, packet
loss and JPEG compression artifacts on fixation patterns.

Gaze-based approaches utilising objective metrics have not yet
been employed to study perception of object-scene mismatches in
the context of composite realism. Particularly, in a manner which
would allow generalisability or transferability of the findings. In
this paper, we wish to address these limitations through a study of
human gaze when assessing the quality and realism of composites
in a first step towards developing observer models for automated
compositing tools.

Table 1: Experiment design, showing 2×2 factorial design and assigned
observer groups.

Object location & Identity
No location Location

Exposure Group A (EN) Group B (EL)
Mismatched Feature CCT Group C (CN) Group D (CL)

3 METHOD

3.1 Overview & Design

We apply a between-groups 2×2 factorial design. The factors were:

• mismatched object feature: exposure (E) and correlated
colour temperature (C)

• observer knowledge of the location/identity of the processed
object: no location (N) and location (L)

Using these factors, we define 4 experimental conditions (see Ta-
ble 1): EN (exposure, no location), EL (exposure, location), CN
(CCT, no location), CL (CCT, location). The experimental proce-
dure adopted is an adaptation of the double-stimulus impairment
scale (DSIS) method [21]. In each trial, observers had to assess if
an object-scene combination appeared realistic or unrealistic.

3.2 Stimuli

The experiments used 33 images with segmented objects, selected
from a subset of the SUN Dataset, as in [3]. The images were se-
lected to cover a range of object types and luminance values, ac-
cording to the mean luminance of the segmented objects, (in CIE
L∗a∗b∗ colour space). The selection was made so that the seg-
mented object occupied no more than 1/3 of the total image area.
The horizontal resolution of the images was normalised to 600 pix-
els (px), preserving the aspect ratio. At a 65 cm viewing distance 37
px on the screen corresponded to 1◦ visual angle (VAn). Examples
of these images can be seen in Figure 1a.

In each image, the segmented object had either an exposure or
CCT offset applied to it to simulate an unrealistic combination of
object and scene ([31, 3]. Exposure offsets were implemented using
a scaling of the V channel in HSV space, whereas CCT offsets were
implemented using an additive offset in the perceptually uniform
mired space, following the method described by Robertson [25].
To minimise learning effects, the offsets applied to the objects were
varied: exposure was scaled in 11 logarithmically spaced steps be-
tween .3162 and 3.162, corresponding to a range of -1.661 to 1.661
in log2 domain. CCT was offset in 11 increments of 40 mired, be-
tween -200 and 200 mired. The offset ranges followed those in:
[31, 3]. The order of relative offset intensities was kept the same
for exposure and CCT. Examples of offsets applied to an image can
be seen in Figure 2.

3.3 Observers

Sixty (60) observers, recruited from a population of university staff
and students were randomly assigned into 4 groups (see Table 1).
All observers were volunteers and were not rewarded. The follow-
ing groups were compiled: Group A (condition EN) with a mean
age of 26.00 (S D = 5.76) 7 females, Group B (condition EL) with
a mean age of 25.93 (S D = 4.32), 7 females, Group C (condition
CN) with a mean age of 28.47 (S D = 4.81) 6 females and Group
D (condition CL) with a mean age of 32.27 (S D = 8.15) 7 females.
All observers had normal or corrected-to-normal vision and normal
colour vision, as verified by a SNELLEN chart and Ishihara test.
Each observer gave consent to take part in the experiment and was
naı̈ve to its purpose.



3.4 Apparatus
3.4.1 Display
Images were displayed on a 22” 60 Hz Ilyama ProLite B2280HS
LED monitor, calibrated to sRGB colour space using an X-Rite i1
Display Pro calibrator. The monitor was placed in a evenly illu-
minated room and the calibration was corrected for both the chro-
maticity and intensity of the ambient illumination. The maximum
measured luminance level of the display was 214 cd/m2, while the
black luminance was .375 cd/m2. When displayed, the images oc-
cupied 11.8◦× 7.9◦ VAn.

3.4.2 Eye tracker
We used a Tobii X1 Light eye tracker, fixed below the display at
a distance of 65 cm from the observers’ head (see Figure d), as
recommended by the manufacturer. Average binocular accuracy, as
reported by the manufacturer, was .4◦ VAn and an average precision
was .2◦ VAn at the selected viewing distance. Its typical sampling
rates fall between 28-32 Hz. The eye tracker compensated for head
movements of up to 44 cm horizontally and 32 cm vertically, which
removed the need for a chin rest. The device was recalibrated for
each observer, following the manufacturer’s recommendations [26].

3.5 Procedure
3.5.1 Preparation
Observers were asked to familiarise themselves with the test in-
structions and shown examples of the reference (original unmodi-
fied - see Figure 1b) and test images (processed object - see Figure
1c). Observers were then given an opportunity to ask questions.

3.5.2 Trials
Three predefined sets of 11 trials were administered per observer,
11 images per set, with rest breaks between. During each trial ob-
servers in conditions EN (Group A) and CN (Group C) would first
see a reference image, which they were instructed to analyse. In the
case of two conditions which revealed the location / identity of the
processed object (EL - Group B and CL - Group D), a binary mask
was also displayed next to the reference image (see Figure 1b). This
was displayed for 10 seconds, followed by a 3-second middle grey
screen to ensure change blindness [30]. Next, the test image was
displayed (see Figure 1c) . Here, a feature offset had been applied to
the segmented object and the observers’ task was to decide whether
this test image appeared realistic or unrealistic, compared to the
reference image. Observers had 10 seconds to analyse the image
and click the button corresponding to their chosen answer. They
were also requested to respond as quickly and accurately as possi-
ble. This procedure was repeated for each observer.

3.6 Analysis
3.6.1 Fixation Extraction and Fixation Maps
Fixations and saccades were extracted using the ClusterFix package
for MATLAB [12]. Resulting fixation locations were then mapped
onto fixation maps (sparse 2D histograms) Fobs, for each image and
observer. Only fixation data from the image region is used in this
process. Fixations falling outside of the reference and test image
regions (such as the mask image or buttons) were rejected. Joint
fixation maps F joint were generated by normalising and averaging
fixations for each image across all observers from a single condi-
tion:

F joint =
1
N

N∑

o=1

Fobs∑n
i=1

∑m
j=1 Fobs

i j

(1)

Here, Fobs
i j denotes element at row i and column j of fixation map

Fobs. We normalise each joint histogram by the sum of its elements
in order to avoid biasing the joint fixation maps towards observers

who executed a higher fixation count. Thus, each bin of the fixation
map represents a proportion of task time that location was fixated
by that observer.

3.6.2 Eye Movement Metrics
We use commonly applied eye movement metrics, as in [8]: fixa-
tion count (Fc), fixation duration (Fd), time to first fixation on pro-
cessed object (T FFO) and duration of first fixation on processed
object (DFFO). Fc correlate positively with the amount of infor-
mation to be attended and task difficulty. Fd relate to the usefulness
of particular regions to task completion and overall difficulty of in-
formation extraction [9]. A distinction must be made between early
fixations, driven by bottom-up VA mechanisms and later fixations,
driven by top-down mechanisms. Shorter T FFO can be an indica-
tor of an object attracting bottom up VA [11] and longer DFFO can
point to an object’s task-relevant semantic informativeness [9]. Fd
can be affected by scene context: objects that do not belong in the
scene tend to attract longer fixations than object that do [20].

3.6.3 Fixation Map Metrics
To assess similarity between observers’ fixation distributions within
one condition we use Inter-Observer Consistency (IOC) [13],
specifically the “one against all” approach. This compares the fix-
ation map of each observer against a joint fixation map of all other
observers using a similarity metric. We also adopt the Area of In-
terest Similarity (AOIS ), which expresses the degree of similarity
between joint fixation maps across our experimental conditions.

To calculate the similarity between joint fixation maps, for both
IOC and AOIS , we use the similarity score (S S ) as recommended
by Riche et al. [24]. This approach computes the sum of the minima
between each point of two probability distributions:

S S (P,R) =
∑

i, j

min
(
Pi, j,Ri, j

)
where

∑

i, j

Pi, j =
∑

i, j

Ri, j = 1.0 (2)

P and R represent discrete 2D probability distributions (PDs).
We convert discrete fixation maps to PDs by placing a Gaussian
with σ = 1◦VAn at the location of each fixation in order to model
uncertainty in viewing location caused by the accuracy and preci-
sion of the eye tracker, as in [13]. See Figure 1e for a heat map
visualisation of these fixation distributions, along with the original
fixations, marked as red ‘x’ symbols.

3.6.4 Statistical Measures
To estimate parameters and compare between conditions we use
the nonparametric bootstrap method proposed by [5]. Bootstrap-
ping is used both to estimate the means/medians of the eye move-
ment metrics from the empirical samples, as well as calculate their
95% confidence intervals (CIs), standard errors and bias. We use
the bias corrected and accelerated (BCa) method to calculate CIs
[18]. Furthermore we use bootstrapping to compare assess group
differences and effect sizes. Also, we adopt Fisher’s permutation
test [16] as a means for testing the statistical significance of differ-
ences between groups. The chosen statistic for this procedure is the
difference of means (x̄1− x̄2), unless the empirical data distribution
is heavily skewed - in such cases we use the difference of medians.
The number of simulated samples for our bootstrap procedures and
permutation tests is 5000. When computing correlations across re-
alism responses, we use Pearson correlation.

3.7 Hypotheses
The goal of this study is to identify whether the mismatched feature
of a composite as well as observers’ knowledge of the mismatched
object identity/location influence their realism ratings and gaze al-
location. Furthermore we wish to understand whether interactions
exist between the two evaluated factors. We test the null hypotheses



that varying the mismatched object feature and knowledge of object
location/identity will have no effect on:
Eye Movement Metrics:

H1: Fixation counts (Fc)
H2: Fixation durations (Fd)
H3: Time to first fixation on target object (T FFO)
H4: Duration of first fixation on object (DFFO)

Fixation Map Metrics:
H5: Inter-Observer Consistency (IOC)
H6: Area of Interest Similarity (AOIS )

Realism Responses:
In addition to the gaze-based hypotheses, we make the following
hypotheses for observers’ realism ratings and response times:

H7: RT s will be shorter when object location is known.
H8: Realism ratings will not change across location conditions.

4 RESULTS & FINDINGS

We present the results of our experiments below, detailing the impli-
cation for each individual metric. Figure 3 shows the bootstrapped
mean/median values for all metrics under study, along with their
respective 95% CIs. Figure 4 shows bootstrapped pairwise differ-
ences between the means/medians of each evaluated metric. Figure
5 shows AOIS values between conditions.

4.1 Eye Movement Metrics
4.1.1 Fixation Count (Fc)
Results: Fisher’s permutation test indicated that mean Fc values
(see Fig.3) obtained for the CN and EN conditions were signifi-
cantly different from every other condition at p < .05 (see Fig.4).
In contrast, when object location was revealed in conditions EL
and CL, significant differences in Fc were not found (p = 0.81).
Largest effect sizes were observed when comparing mean Fc values
between conditions CN and CL (M=5.35, CI [4.15 6.20] and con-
ditions EL and CN (M=-5.23, CI [-6.29 -4.00]). In all cases, the
effect size for change of feature was smaller than that for change in
knowledge of object location.
Findings: Object location knowledge produced smaller and similar
Fc for both feature conditions. When object location was unknown,
Fc were higher, particularly when CCT was the mismatched fea-
ture. Thus, we reject H1 and accept the alternative hypothesis that
both knowledge of object location and changes in mismatched fea-
ture (when object location is not known a priori) impact Fc.

4.1.2 Fixation Duration (Fd)
Results: Permutation testing found no significant Fd differences
between conditions EN and CN (p = 0.33) (see Fig.3), however Fd
values for each of conditions EL and CL were significantly different
from every other condition at p < .05 (see Fig.4). The largest effect
size was observed for mean differences between conditions CN and
CL (M=-.19, CI [-.23 -.15]). A smaller effect size of this type was
also present across the location condition for exposure: conditions
EN and EL (M=-.07, CI [-.11 -.03]).
Findings: When object location was known, Fd for both mis-
matched features were significantly longer than when object lo-
cation was unknown. Fd were also significantly longer for CCT
compared to exposure when object location was known. Given this
evidence, we reject H2 and accept the alternative hypothesis that
both observer knowledge of object location, and difference in mis-
matched feature have an effect on Fd .

4.1.3 Time to First Fixation on Object (T FFO)
Results: Fisher’s permutation test found no significant differences
between any of the conditions.

Findings: As no significant median T FFO differences were found
between conditions, the null hypothesis H3 that varying the mis-
matched object feature and knowledge of object location/identity
has no effect on T FFO cannot be rejected. This suggests that for
the parameters used in our analysis, neither varying the mismatched
object feature, nor revealing object location cause observers to at-
tend to the object any sooner. Based on this we cannot reject H3
that neither varying the mismatched feature between exposure and
CCT, nor changing object location information has an impact on
T FFO.

4.1.4 Duration of First Fixation on Object (DFFO)

Results: Fisher’s permutation test revealed significant differences
between the medians of each of the EL and CL conditions (see
Fig.3) and every other condition at p < .05. As in the case of Fd ,
no significant difference was found between conditions EN and CN
(p = 0.56).
Again, the largest effect size was present when comparing between
medians of conditions CN and CL (M=-.59, CI [-.68 -.45]), as well
as EN and CL (M=-.57, CI [-.66 -.44]). Notably, a more pro-
nounced effect size between conditions EN and EL (M=-.24, CI
[-.31 -.09]) can be noted, compared to the Fd metric.
Findings: DFFO were longer when object location was known,
particularly in the case of CCT. When object location was unknown,
no significant differences in DFFO were be found. Group differ-
ences for this metric mirror the order of those for Fd . Thus, hypoth-
esis H4 is rejected and the alternative hypothesis that both revealing
object location to observers, as well as changing the mismatched
feature from exposure to CCT has an effect on DFFO.

4.2 Fixation Map Metrics

4.2.1 Inter-Observer Consistency (IOC)

Results: Fisher’s permutation test indicated significant mean IOC
differences between conditions EL and CL, EL and CN, as well
as EN and CN at p < .05 (see Fig. 4). However, their effect sizes
are small, with the largest being between conditions EL and CL
(M=-.03, CI [-.04 -.01]).
Findings: Fixations of observers in the group assessing CCT off-
sets of a known object received highest IOC scores. This could be
due to their increased focus on the target object both in spatial and
temporal terms, as indicated by other metrics discussed here. Re-
vealing object location did not significantly change consistency for
either feature. Observers in each condition show a similar degree of
spatial consistency. As significant differences between conditions
were found, we reject H5 and accept the alternative hypothesis that
varying both the mismatched feature and observer knowledge of
object location have an effect on IOC.

4.2.2 Area of Interest Similarity (AOIS )

Results: Bootstrapped mean AOIS values along with their 95%
CIs obtained for comparisons of joint fixation maps across pairs of
conditions are visualised in Figure 5. Highest similarity values here
were obtained between pairs EN and CN (M=.81, CI [.78 .82]), as
well as EL and CL (M=.82, CI [.81 .84]). A Fisher’s permutation
test found significant differences between the mean similarities of
each of these two condition combinations and every other condition
combination at p< .05. No other significant differences were found.
Findings: The AOIS results indicate that object location knowl-
edge had a higher effect on attended image regions than mismatched
feature. The similarity between fixation distributions for conditions
involving both features and one location condition was consistently
higher than the similarity between conditions involving one feature
and a change in the object location condition. Based on this evi-
dence we reject H6 and accept the alternative hypothesis that object
location knowledge changes AOIS .
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Figure 4: Bootstrapped comparisons of group mean/median differences for
each of the evaluated metrics.
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Figure 5: Test image AOIS for each pairwise combination of conditions.

4.3 Realism Responses
4.3.1 Response Times (RT )

Results: Bootstrapped median RT values along with their 95% CIs
obtained for each condition are visualised in Figure 3. A Fisher’s
permutation test did not find significant median RT differences be-
tween these two conditions (p = .63). Significant differences were
found for every other combination of conditions at p < .05. Boot-
strapped means, their CIs and effect sizes for these group differ-
ences are visualised in Figure 4. The largest effect sizes were ob-
served between conditions EL and CN (M=-1.84, CI [-2.18 -1.58]),
EN and CN (M=-1.15, CI [-1.57 -.85]), as well as CN and CL
(M=1.06, CI [.67 1.37]).
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Figure 6: Realism responses averaged for feature offset values across image
sets for exposure (left) and CCT (right). Line styles indicate object location
conditions. Error bars indicate standard deviation of mean realism ratings for
each offset level.

Findings: Median response times for CCT were consistently
higher compared to exposure, within each of the location condi-
tions and significantly lower across the location condition for each
of the features. The latter difference indicates that additional infor-
mation contributed to faster decisions regarding realism, the former
is in alignment with other fixation metrics, suggesting that CCT
mismatches may have been more difficult to detect and/or judge by
observers. Based on this evidence, we accept H7 stating that reveal-
ing object location to observers reduces RT . We note a significant
increase in RT when the mismatched feature is changed from expo-
sure to CCT in a given object location knowledge condition.

4.3.2 Realism Ratings

Results: Realism scores are shown in Figure 6. Despite the
between-subjects design, observers’ realism responses were highly
correlated across location conditions, particularly between condi-
tions EN and EL (r = .91, p < .05) and CN and CL (r = .81, p <
.05). Between-feature correlations for conditions EN and CN (r =
.57, p < .05), as well as EL and CL (r = .63, p < .05) were weaker.
This supports H8 that realism ratings should not change across lo-
cation conditions.

Findings: While revealing the identity and location of mismatched
objects affected almost every gaze metric under test, it did not have
a large impact on observers’ realism responses, which remained
highly correlated for both features across location conditions. This
suggests that once the target object was located by observers, visu-
ally similar trends in realism judgements were made for each mis-
matched feature (see Figure 6). Expectedly, correlation between
realism responses was lower when comparing exposure with CCT.
This supports the explanation that CCT offsets were more diffi-
cult to judge, compared to exposure under the conditions of our
study. This evidence supports H8 that realism responses should not
change across the location condition.



5 CONCLUSIONS
This paper has presented a first quantitative study into gaze patterns
of observers analysing the visual realism of image composites and
the impact of object location and identity knowledge in this context.
A series of gaze metrics have been presented and evaluated in a 2×2
factorial study involving 60 observers. We found that the metrics
selected provide insight into the visual processes involved in ob-
servers analysing visual realism/quality. Furthermore they allow for
differentiation between spatial and temporal gaze properties, which
proves useful for studying the process of composite analysis.

Under the experimental conditions outlined, our results point to-
wards several conclusions:

1. Observers focus primarily on the object in question and much
less on other scene regions when performing assessment.

2. Knowledge of object location impacts the process of analysis
(i.e. fixation metrics), but has little effect on the outcome (i.e.
the final realism ratings).

3. Revealing/withholding object location has a larger impact on
spatial fixation allocation than varying the mismatched feature
between exposure and CCT. Along with minimal differences
in inter-observer consistency this suggests the possibility of
common spatial strategies for CCT and exposure.

4. Significant differences in fixation metrics, particularly fix-
ation durations and counts, suggest the extraction of task-
relevant information for CCT mismatches may be more dif-
ficult than for exposure. Significant differences in response
times reinforce this conclusion.

Our results indicate that the eye-tracking paradigm is a reliable
way to improve our understanding of how observers perform visual
realism judgements. Parallels can also be drawn between the re-
sults of our work and similar previous studies. For example, as the
location of mismatched objects was indicated to observers, their fix-
ation durations increased, similarly to [15] and in accordance with
predictions of [9]. Greater concentrations of fixations were noted
when observers had prior knowledge of object locations, as in [28].
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Abstract

Many tasks in computer vision are often calibrated and
evaluated relative to human perception. In this paper, we
propose to directly approximate the perceptual function
performed by human observers completing a visual detec-
tion task. Specifically, we present a novel methodology for
learning to detect image transformations visible to human
observers through approximating perceptual thresholds. To
do this, we carry out a subjective two-alternative forced-
choice study to estimate perceptual thresholds of human ob-
servers detecting local exposure shifts in images. We then
leverage transformation equivariant representation learn-
ing to overcome issues of limited perceptual data. This rep-
resentation is then used to train a dense convolutional clas-
sifier capable of detecting local suprathreshold exposure
shifts - a distortion common to image composites. In this
context, our model can approximate perceptual thresholds
with an average error of 0.1148 exposure stops between em-
pirical and predicted thresholds. It can also be trained to
detect a range of different local transformations.

1. Introduction

Human observers are the target audience for image con-
tent and thus the ultimate judges of image quality, which
is often measured with reference to opinions of humans
and various local and global distortions and inconsisten-
cies perceptible to them. These distortions can arise as
side-effects of image acquisition, compression, transmis-
sion, compositing, and post-processing. Understanding and
modeling how humans detect and process distortions to ar-
rive at subjective quality scores underpin image quality as-
sessment (IQA) research. Many attempts have been made
at modeling the sensitivity of the human visual system
(HVS) to certain types of distortions for applications pri-
marily in IQA [13, 8, 24, 54, 16, 23] and saliency modeling
[51, 55, 29, 19], where detection of relevant and perceptu-

Figure 1. Performance of our model illustrated for three input im-
ages and 11 levels of exposure transformation. The left columns
show input images with applied exposure transformations and
the magnitude of this transformation expressed on a log2 scale.
Middle columns show ground truth from our subjective experi-
ments and rightmost columns show output of our model, where
red and green regions indicate detected negative and positive
suprathreshold exposure transformations, while blue regions in-
dicate no suprathreshold transformations.

ally suprathreshold features is key to the approximation of
human performance. However, many of these approaches
are limited in their generalizability, efficiency or transfer-
ability. Alternative approaches based on signal fidelity [45],
statistical measures [46] and deep learning models [7, 50]
were also developed as a way to address such limitations.

Human sensitivity to physical stimuli is measured using
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psychophysics [17] and often represented using psychome-
tric functions, which describe observer performance as a
function of stimulus intensity [2]. This method is effec-
tive when stimuli are simple, but is difficult to generalize
to more complex stimuli, such as natural images. This is
largely due to the vast amount of variation in the set of nat-
ural images and the corresponding number of trials required
to measure observer performance across sufficiently many
images and stimulus intensities. In subjective image eval-
uation, the quality score can be seen as a result of apply-
ing an observer function to an input image. This function
can be summarized as detection of visible distortions, their
implicit pooling, and mapping to a point on a given quality
scale [20]. This is further influenced by task, image content,
and allocation of attention [33]. Recent work has made sig-
nificant progress in approximating this entire process in the
context of IQA using deep convolutional neural networks
(DCNN) [7, 50]. However, these approaches are mostly
limited to a fixed set of low level, globally-distributed ar-
tifacts available in public IQA datasets, such as LIVE [47]
containing 5 types of distortions, or TID2013 with 24 types
and 5 magnitude levels each [39]. This limits the gener-
alizability, particularly for applications where the type and
number of possible distortions vary significantly, or where
the distortions are context-dependent and only present in a
local region of the image, such as image compositing. The
creation of such datasets is a costly and time-consuming
process, due to the need for human observers. Approxi-
mation of this observer function - detecting visible incon-
sistencies of an arbitrary type - would allow for application
in many areas related to IQA, including composite quality
assessment, manipulation detection, and image restoration.

In this work, we propose a DCNN-based methodology to
approximate this observer function and validate our method
with respect to a specific local distortion common to image
composites - local exposure inconsistencies associated with
an image region occupied by an object. We achieve this by
learning a mapping between images affected by this distor-
tion and corresponding points on an empirical psychomet-
ric function, estimated with respect to this distortion type.
Viewing image distortions as transformations allows use of
unsupervised methods for learning relevant features. Our
approach can be applied to a range of problems where dis-
tortions visible to humans need to be localized in an image,
such as IQA or composite quality assessment, even when
little subjective data is available. Our contributions are:
• A novel method for detecting effects of local image

transformations based on perceptual data and unsuper-
vised pre-training
• A model trained using this method to detect local ex-

posure shifts
• A dataset of images with corresponding empirical sub-

jective perceptual thresholds from our experiments

2. Related Work

2.1. Human Perception

The HVS displays different levels of sensitivity to var-
ious distortions and inconsistencies in images, detecting
some readily [5], while disregarding others completely
[36, 9]. Detection of inconsistencies in lower-level prop-
erties of images depends largely on fundamental character-
istics of the HVS, such as contrast sensitivity [2], luminance
adaptation, and masking [38]. These characteristics de-
scribe how immediate context, such as differences in back-
ground luminance, spatial frequency, and presence of tex-
ture, influence the visibility of different image artifacts. For
example, distortions such as noise or quantization, are much
easier to notice on a textureless background, compared to a
textured one. The amount of change in stimulus required for
an observer to reliably notice a difference is referred to as
the a just-noticeable difference (JND) or difference limen.
JNDs have been used extensively to model human percep-
tual sensitivity in tasks such as blur detection [48], visual
attribute differences [60], perceptual metrics [63], or 3D
model attribute similarities [12]. Observer sensitivity is fur-
ther modulated by the allocation of visual attention [35, 30],
particularly for localized distortions, such as those in image
composites [14].

2.2. Psychometric Functions

Observers assessing image quality base their judgments
on visual evidence, such as visible artifacts or distortions
[52]. Human performance in detection and discrimination
tasks is commonly modeled using psychometric functions
[49, 44, 21, 53, 34]. The psychometric function describes a
relationship between observer performance and an indepen-
dent variable, often describing a stimulus level or physical
quantity [57]. It is defined as

Ψ(x; θ) = γ + (1− γ)f(x;α, β) (1)

where θ refers to the set of parameters: γ (guess rate)
defines the lower bound of the function corresponding to
chance performance, while f(x;α, β) defines a sigmoidal
function parametrized by α - its location and β - its slope.
Observer performance for a given stimulus x is represented
by the output of Ψ denoted as y = Ψ(x; θ). The threshold
of a perceptual function can thus be defined as the stimu-
lus level xt which yields a particular probability of stimulus
detection yt, such that xt = Ψ−1(yt). In practice, psy-
chometric functions are commonly estimated using adap-
tive sampling procedures, such as QUEST [56], which limit
the number of required trials by sampling stimuli with the
highest probability of lying at the threshold.



2.3. Saliency & Semantic Segmentation

Our work is related to both salient object detection
(SOD) and semantic segmentation (SS), both of which seek
to assign class membership of individual pixels based on
local contextual information. SS assigns a single semantic
object class to each pixel of an input image [31]. SOD aims
to segment the most salient object in an image, based on
its low-level image-based features, often measured against
human performance [6]. Image-to-Image neural networks
have become popular tools in these domains, underpin-
ning many state-of-the-art CNN architectures such as fully-
convolutional networks (FCNs) [11], U-nets [42], adver-
sarial approaches, such as Pix2Pix [18] and many varia-
tions thereof. These approaches emphasise the importance
of multi-scale features [25], as well as spatial resolution
preservation through dilated convolution and skip connec-
tions [61, 10].

2.4. Unsupervised & Semi-Supervised Learning

Supervised learning approaches, such as those in Section
2.3, require large amounts of labeled data, which can neces-
sitate a significant time effort. For perceptually-constrained
tasks, this overhead is multiplied, due to the requirement
for larger observer samples and more replications, com-
pared to Likert-style subjective opinion studies. Conversely,
unsupervised learning techniques do not require manually-
labeled data to learn. Thus, this paradigm is attractive for
our application, as we can exploit unlabelled data to learn
the features describing a given transformation and then use
a smaller, labeled perceptual dataset to fine-tune these fea-
tures to the empirical perceptual data.

Some approaches, such as representation learning [3],
relax the requirement for labeled data through the use of
auto-encoders (AEs) and generative adversarial networks
(GANs). AEs learn compressed representations of data by
attempting to reconstruct it through a feature bottleneck.
Representations learned by AEs tend to encode salient fea-
tures of the data they are conditioned on, which in turn can
act as a task-specific feature extractor for supervised tasks
[1]. On the other hand, GANs adopt an adversarial train-
ing regime, where a generator and discriminator are jointly
trained. E.g. the generator can be tasked with generating a
sufficiently realistic image, such that the discriminator clas-
sifies it as real. In turn, the discriminator is tasked with
separating generated images from real ones [40]. Zhang et
al. (2019) showed that the performance of supervised clas-
sifiers can be improved by using an Auto-Encoding Trans-
formations paradigm. They propose to learn transformation
equivariant representations (TERs), which encode transfor-
mations applied to the input [62]. This reduces the need
for data augmentation and forces the encoder to learn a bet-
ter representation of the input data, which encodes visual
structures well, invariant of the transformation of the input.

We adapt this approach to detecting local transformations
within an image, which forms the foundation of our pro-
posed methodology.

3. Method
In this section, we elaborate on our proposed approach

and detail our model design and rationale. We summarize
our methodology, including the formulation of distortions
as transformations, use of empirical perceptual thresholds
as decision boundaries, collection of empirical psychomet-
ric data, training dataset preparation, and both stages of our
training procedure.

3.1. Distortions as Transformations

Many distortions affecting image quality can be seen
as transformations applied to the original, uncorrupted im-
age as a side-effect of some processes such as transmis-
sion, compositing, or compression. This is conceptually
similar to the intuition behind denoising autoencoders [4].
Denoising autoencoders learn a low-dimensional manifold
near which training data concentrate. They also implicitly
learn a function projecting corrupted images Ĩ , affected by
a corruption process and lying near the manifold of uncor-
rupted images, back onto this manifold. This conceptualiza-
tion allows for the generation of large amounts of training
data from a small set of undistorted images, by applying
various transformations. We focus on a single transforma-
tion: local exposure shifts. This corresponds to the scaling
of luminance by a constant, applied to a region within im-
age I corresponding to an object and defined by a binary
mask M . This is performed on the luminance channel of
the perceptually-uniform Lab colorspace [41]. We motivate
this choice as follows: observers are reliable at detecting
such low-level image distortions [15]; exposure distortions
represent common mismatches present in image compos-
ites, which are a motivating application of our research [59];
this type of transformation is computationally inexpensive
to apply, allowing for gains in training efficiency.

3.2. Perceptual Thresholds as Decision Boundaries

In the context of image distortions and assuming con-
trolled viewing conditions, a psychometric function can be
seen as the result of an observer process operating on a
range of input data. Given an unprocessed image I , object
mask M , observer function O and Ĩx a corrupted version of
I resulting from a local transformation T (I,M, x), the em-
pirical psychometric function can be interpreted as a result
of applying the observer function to Ĩ for all values of x.
The observer function O thus represents the perceptual pro-
cess performed by an observer, which maps an input stimu-
lus Ĩx to a point on the psychometric function. Accordingly,
detecting suprathreshold transformations in an image can
be defined as applying the observer model to classify each



pixel based on the existence of the effects of a suprathresh-
old transformation. This requires a) a psychometric func-
tion describing observer performance with respect to the
magnitude of the transformation and specific image stim-
ulus, b) contextual information about the scene and appear-
ance of objects within it, from which information about the
existence of local distortions can be derived and c) an ap-
propriate feature representation, equivariant to the transfor-
mation in the training data. Consequently, our problem can
be defined as a pixel-wise classification of an image, where
each pixel is assigned one of three classes c, whose deci-
sion boundaries are defined by the thresholds xt− and xt+
of the two psychometric functions estimated for a given im-
age, with respect to the parameter x of the transformation
generating the stimuli Ĩ:

c =





0, if x < xt−
1, if x > xt+

2, otherwise
(2)

Here, xt is the value of the transformation parameter for
which the probability of detection exceeds threshold t, set
to 0.75, corresponding to the JND in 2AFC tasks. This
is the midpoint between perfect (100%) and chance (50%
for 2AFC task) performance [57]. As we capture two psy-
chometric functions per image, one corresponding to de-
creasing the pixel intensity (xt−) and one for increasing it
(xt+), their two thresholds separate the parameter space x
into three regions (Fig. 2d).

3.3. Psychometric Function Estimation

To estimate image-wise empirical psychometric func-
tions with respect to our transformation, we design a 2AFC
study using a dataset of natural images with segmented ob-
jects, where the segmentation is defined by a binary mask.
Following the approach of [15], we systematically apply
transformations with different values of x to the segmented
object. We display the original (I) and transformed (Ĩ)
images side by side in random order and ask observers to
identify I correctly. We repeat this for multiple values of
x and fit Weibull psychometric functions to each observer’s
responses for each image. To extract the thresholds, we es-
timate the parameter values xt− and xt+ corresponding to
a performance level of yt for negative and positive expo-
sure shifts, respectively. We then bootstrap mean thresholds
across all observers who viewed the same image. We detail
the stages of this process in the remainder of this section.

3.3.1 Experiment Design

All experiments are performed under controlled labora-
tory conditions, following the ITU BT-500 recommenda-
tion [20]. We use an Apple Cinema HD 23” monitor, cal-
ibrated to sRGB colorspace using an X-Rite i1Display Pro

Figure 2. Illustration of the 2AFC procedure used in our experi-
ments. a) For a given image I and object mask M we generate im-
ages Ĩ with different exposure offsets based on the sampled value
of x. b) Example stimulus displayed to an observer. c) Observer
correctly identifies I and Ĩ for x = 0.8. d) Observer response
added to their previous responses for different sampled values of
x. Symbols xt− and xt−, illustrated with orange dashed lines, in-
dicate the location of the threshold after performing psychometric
function fitting.

display calibration device. Observers are positioned 65cm
away from the display. To mitigate the confounding im-
pact of visual search on the task, particularly when differ-
ences between the images are minimal, we explicitly indi-
cate the transformed region in the image by displaying the
binary mask corresponding to the object, following [14]. To
minimize the number of experimental trials we leverage the
QUEST adaptive sampling procedure [56], using the imple-
mentation from the PsychoPy 2 library [37].

3.3.2 Observers & Stimuli

We recruit N = 120 naive observers, with a mean age of
31 (SD = 11.85), 44 of whom are female and randomly
assign them to 20 groups. Observers are screened for nor-
mal vision before participating in the experiment. Our stim-
uli dataset consists of 300 8-bit images with corresponding
object masks, randomly sampled from the LabelMe [43]
and SUN [58] datasets. These images are then evenly dis-
tributed across the observer groups. Each group views 15
unique images from the dataset.

3.3.3 Task & Experimental Procedure

In the experimental session, each observer performs re-
peated 2AFC trials for each of the 15 base images in their
allocated image sample, viewing at least 20 different varia-
tions of each base image. Observers first complete 20 trials
using a calibrating image, results for which are discarded.



In each trial observers are shown 2 images: the original im-
age I and a transformed version of the original image Ĩx, the
result of exposure transformation T (I,M, x) of magnitude
x. A segmentation mask M is also displayed indicating the
target object. These images are displayed at the same time
and remain on-screen for 5 seconds. The order of I and Ĩ
is randomized every trial. Observers are instructed to cor-
rectly indicate I by clicking a corresponding button. After
each response, a new value of x is sampled by the QUEST
procedure [56], and the process is repeated 20 times.

3.3.4 Perceptual Threshold Estimation

For each observer-image combination, we collect binary re-
sponses y with corresponding stimulus intensities x. We
use the PsychoPy library [37] to fit a Weibull cumulative
distribution function to this data, given by

y = 1− (1− γ)e−( kxt )β (3)

and

k = −log
(

1− α
1− γ

) 1
β (4)

where x is the stimulus intensity, y is the proportion of
correct responses, γ is the performance level expected at
chance, equal to 0.5 for 2AFC tasks, α is the performance
level defining the threshold (set to 0.75, corresponding to
the JND for 2AFC), β is the slope of the function and t is the
threshold. Once we extract the threshold of this function,
we pool the threshold values across observers for that im-
age and bootstrap the mean of these thresholds, using 1000
bootstrap samples. We obtain two generalized perceptual
thresholds: xt− and xt+ for each image in our dataset.

3.4. Transformation Equivariant Representation
Learning (AET)

While object classifiers, such as models trained on Ima-
geNet, aim to achieve invariance to changes in object bright-
ness, our task explicitly uses these features to assign classes
to output pixels. Thus, transfer learning with an object clas-
sifier/detector is unsuitable for addressing overfitting with
our small dataset. Instead, we propose to first learn a task-
specific TER in an unsupervised manner, adopting the AET
approach of Zhang et al. [62], who encode a TER by
training to predict transformation parameters that describe a
transformation between two inputs. Analogously, we wish
to encode a representation that is invariant to a particular
transformation type: local exposure shifts.

3.4.1 AET: Network Architecture

We can train a convolutional autoencoder to predict the pa-
rameter of a local exposure shift applied to the input, by

mapping images containing local exposure shifts to masks
indicating their pixel-wise magnitude. To achieve this, we
develop an AET model based on the VGG16. We first con-
vert the VGG16 to a fully convolutional network [31]. Due
to the importance of contextual and multiscale information
to our task, we attach a multiscale extension, as proposed
in [26]. This introduces skip connections to the model, tak-
ing outputs after each max pooling layer in the VGG16 and
passing each through an additional convolutional branch be-
fore concatenating the output of all branches. Each branch
consists of 3 convolutional blocks. The first block contains
a 3×3, 128-channel convolutional layer with a stride setting
dependant on the scale of the input. This is 4, 2, 1, 1 respec-
tively for inputs from the first 4 max pooling layers, caus-
ing all multiscale branches outputting feature maps of equal
resolution. This layer is followed by a batch normaliza-
tion layer and a ReLU activation. The following two blocks
contain 1 × 1 convolutional layers with a stride of 1, with
128 and 3 channels respectively. They are each followed
by batch normalization and a ReLU activation. To output
masks of equal resolution to the input images, we add a
convolutional decoder to the output of the multiscale con-
catenation layer in our model. It consists of 3 blocks, each
block containing a 2× upsampling layer, followed by two
sets of convolution, batch normalization, and ReLU layers.
The first convolution in the block uses 3× 3 kernels, while
the second uses 1 × 1 kernels. See Figure 3 for a detailed
overview.

Using this architecture, we design an AET model which
shares the weights of the network between two image in-
puts, I and Ĩx (Fig. 4). Activations for both inputs are
concatenated and fed to a final convolutional layer. As our
transformation can be expressed by a single scalar the final
layer of our AET is a 3×3 convolutional layer with a linear
activation, which outputs masks with resolution equal to the
input image, with a single value expressing the predicted ex-
posure shift for each pixel. This way we can train our model
to approximate pixel-wise transformations applied to an in-
put image.

3.4.2 AET: Training Data Generation

To train the AET in an unsupervised manner, we learn a
mapping between input images Ĩ and output masks Y =
xM , which encode the parameter of the transformation ap-
plied to the input. Ĩ contains an exposure shift applied
within the region defined by M . Each pixel in Y contains
the value of the exposure shift x applied to the correspond-
ing pixel in Ĩ . This is x wherever M = 1 and 0 elsewhere
(Fig. 4). During training, we dynamically sample images
I and corresponding masks M from the MSCOCO dataset
[28]. As some images in MSCOCO contain multiple masks,
we randomly select one of them, provided its area is larger



Figure 3. Architecture of our VGG16-based convolutional autoencoder used in the perceptual threshold learning task. The network is based
on a FCN adaptation of the VGG16. See Section 3.4 for a detailed description of the architecture.

Figure 4. Unsupervised AET architecture consisting of a VGG16-
based convolutional autoencoder with weights shared across two
inputs. Activations for both inputs are then concatenated and fed
to a final convolutional layer with a single channel output. The
output masks encode the parameter of the transformation for each
pixel.

than 1%. We then apply exposure shifts by sampling the
transformation parameter x and scaling the luminance chan-
nel of I after conversion to Lab colorspace:

ĨL = 2xIL �M + IL � (1−M) (5)

where x is a scalar sampled from a base-2 log-uniform dis-
tribution spanning (log2(0.1), log2(10)), IL is the lumi-
nance channel of the original image I after conversion from
RGB to Lab colorspace, M is the alpha mask and � is
the Hadamard product. We clip the pixel values of pro-
cessed image to the range (0.0, 1.0), convert back to RGB,
rescale to 0.0 mean and unit variance, reshape images to
(224, 224, 3) and feed both I and Ĩ to the two inputs of the
AET (as in Fig. 4). The output of the network is a mask Ŷ
approximating the parameter of the transformation at each

pixel of the input image.

3.4.3 AET: Objective & Optimizer Details

We train our model using the Adam optimizer [22]. We use
default values for all parameters, aside from the learning
rate, which is controlled using a cosine annealing sched-
ule [32]. The minimum and maximum learning rate in
the annealing schedule are set to 1e−6 and 1e−4, respec-
tively. The learning rate cycles between these values over 5
epochs, after which the maximum learning rate is reduced
to 90% of its value, and the cycle is repeated for 1.5× as
many epochs. We train the AET for 90 epochs, minimizing
the mean squared error (MSE) loss between Ŷ and Y . We
use the model with the lowest validation error as the back-
bone for the Perceptual Threshold Classifier.

3.5. Perceptual Threshold Classifier (PTC)

3.5.1 PTC: Network Architecture

To detect perceptually suprathreshold transformations in
images, we utilize the pre-trained AET architecture de-
scribed in Section 3.4, extract the encoder and decoder
shown in Figure 3 and replace the final single-channel con-
volutional layer of the decoder with a spatial dropout layer
with a dropout probability of 75%, followed by a 3-channel
convolutional layer with a softmax activation.

3.5.2 PTC: Training Data Generation

Using thresholds obtained in our experiments, we devise a
data generation method which dynamically applies random
exposure transformations to the images used in our 2AFC



experiment and generates corresponding categorical masks,
based on whether the parameter of the transformation x ex-
ceeds one of the two empirical thresholds estimated for a
given image. When x exceeds a threshold, any pixels af-
fected by this suprathreshold transformation are assigned
c = 0 (negative suprathreshold exposure shift) or c = 1
(positive suprathreshold exposure shift), following Equa-
tion 2. The last channel of the target image corresponding to
c = 2 is conceptually similar to the background class in se-
mantic segmentation models. It indicates pixels that do not
belong to any of the foreground classes. In our case, these
are pixels unaffected by a suprathreshold transformation.
We use a 90%-10% training/validation split. The shape of
the target mask is (224, 224, 3), containing one channel per
class. During training, we use a data generator constrained
to ensure a balanced class distribution in each minibatch.
Specifically, for each batch we sample x from three ran-
dom distributions whose ranges are defined by the percep-
tual thresholds for a given image:

x ∈ R :





(log2(0.1), xt−), if x < xt−
(xt+, log2(10)), if x > xt+

[xt−, xt+], otherwise
(6)

The distribution for c = 2 is log-uniform, whereas the
distributions for classes 0 and 1 are exponential distribu-
tions biased towards values of x lying close to the thresh-
olds xt− and xt+ respectively. These three values of x are
then used to create three processed images and correspond-
ing target masks Y , one for each class. For larger batch
sizes we simply sample multiple images for each class. To
improve generalization, we apply image augmentation, lim-
iting to zooming, rotation, and cropping in order not to af-
fect relative pixel intensities. We perform horizontal and
vertical flipping with 50% probability, as well as random
scaling and cropping in the range 110-150% and with 50%
probability.

3.5.3 PTC: Objective & Optimizer Details

We follow the optimization approach from Section 3.4.3
with minor changes. Firstly, we select a loss function ap-
propriate for pixel-wise classification with an imbalanced
dataset. In most images in our dataset the background
class occupies more pixels than either of the suprathreshold
classes, we handle this imbalance by reducing the contribu-
tion of easy classification examples to the loss using focal
loss [27]. We also experiment with freezing different sec-
tions of our backbone network in order to maximize gener-
alizability. We train our models with a batch size of 12 until
convergence using early stopping to cease training when no
improvement in validation loss is seen for 400 epochs. For
evaluation, we select the model which maximizes the vali-
dation mean intersection-over-union measure.

4. Results & Discussion

4.1. Perceptual Threshold Estimation

In our 2AFC study, we obtained a total of 41725 unique
responses, with an average of 23.14 responses per observer
per image. Observers took on average 2.65s per response.
A total of 590 mean thresholds for 295 images were cal-
culated after fitting psychometric functions, bootstrapping
and removing outlier thresholds beyond 3 standard devia-
tions (Fig. 5). The means of the resulting threshold distribu-
tions were xt− = −0.2478 and xt+ = 0.2280 for negative
and positive thresholds respectively. On average, perceptual
thresholds were lower for highly-textured and bright ob-
jects. We found significant correlations between the mean
luminance of target objects and corresponding mean thresh-
olds. For negative offsets the Pearson product-moment cor-
relation coefficient was r = .25 p ≤ .001 and r = −.39
p ≤ .001 for positive offsets. We found a similar correlation
between the standard deviation of object luminance values:
r = .30 p ≤ .001 for negative and r = −.45 p ≤ .001 for
positive offsets. No significant correlations between percep-
tual thresholds and target object areas were observed. How-
ever, we note that the highest perceptual thresholds in our
results were observed in images with very small objects. In
post-test discussions, observers reported selecting specific
parts of objects to inform their decisions, these were com-
monly high-contrast regions near target object boundaries.

4.2. Perceptual Threshold Learning

Since no previous work has addressed the problem of
perceptual threshold approximation, we cannot compare
our model’s performance to existing solutions. Instead to
evaluate the validity of our approach we perform 5-fold
cross-validation, reporting average MSE between the pre-
dicted and ground truth thresholds for our validation set.
We first develop a psychometrics-inspired method for find-
ing our model’s decision boundary, which will serve as a
threshold to be compared against empirical thresholds from
our experiments. This is done by calculating the soft F1
score for each of the two suprathreshold classes between the
ground truth mask and model prediction for a range of val-
ues of x and placing a threshold at the point when F1 score

Figure 5. Empirical thresholds collected in our experiment



Figure 6. Illustration of how change in F1 score between predicted and ground truth (not shown here) masks is used to estimate our model’s
decision boundary. The top row shows input images, the middle row shows model prediction softmax probabilities with red for detected
negative offsets (class 0), green for positive offsets (class 1) and blue for no offset. The bottom row shows class-wise F1 scores for classes
0 and 1. More examples can be found in supplementary materials.

Figure 7. Example of a) Over-exposure resulting from flash or spot
lighting in the original image b) both the original over-exposure
green) and manually applied underexposure (red) are detected by
our model c) mask showing area where negative exposure shift is
manually applied

becomes nonzero. In our experiments we use F1 = 0.1, see
Figure 6 for an illustration of the soft F1 score as a function
of exposure shift. More visual examples can be found in the
supplementary materials.

To evaluate the relevance of features learned by the AET,
we perform this analysis for a range of fine-tuning regimes,
where different parts of the model are frozen before train-
ing. The results of this experiment can be seen in Table 1.
Overall, our results indicate the benefits of adopting both
the AET and multiscale extension, particularly considering
the performance increase afforded by freezing the entire en-
coder and only fine-tuning the decoder. The model’s per-
formance drops significantly when the pre-training stage is
omitted or when all layers of the pre-trained model are al-
lowed to be fine-tuned.

5. Conclusions, Limitations and Future Work

We have presented a novel methodology for the detec-
tion of local suprathreshold image transformations based
on approximating the function performed by an observer.
This is achieved by training a fully convolutional image
classifier and conditioning its class decision boundaries us-
ing a data generation scheme based on empirical perceptual
thresholds corresponding to JNDs. We find that the thresh-
old distributions generated by our model approximate the
empirical threshold distributions from our experiments. We

Freeze Up To Layer MSE both MSE xt− MSE xt+

no freeze 3.9690 3.5716 4.3664
block1 pool 0.3028 0.2618 0.3442
block2 pool 0.2098 0.2188 0.2000
block3 pool 0.1895 0.1633 0.2161
block4 pool 0.2350 0.2025 0.2681
block5 pool 0.1335 0.1624 0.1046
concatenate 0.1148 0.1307 0.0978

Table 1. Cross-validation results: Average mean squared valida-
tion errors between ground truth thresholds and model predictions
are given in exposure stops. Individual errors for positive and neg-
ative exposure offsets are shown in the rightmost two columns.
Errors in each row are a result of freezing progressive parts of the
pre-trained AET backbone.

also confirm that adopting the unsupervised AET approach
achieves consistently lower errors than training directly on
the empirical data without pre-training. Our method can be
applied to a range of local distortions or transformations,
such as color shifts, blur, aliasing or subsampling, as long
as they can be represented by a transformation and mask.
Aside from transformations applied manually, our model
detects pre-existing over-exposure in our validation set (see
Fig. 7). Our results are constrained by the 8-bit dynamic
range of images used in our study and the inherent biases
associated with individual observers. However, they show
that using CNN architectures and an AET unsupervised pre-
training strategy if an efficient method of detecting local
transformations in images. While a further detailed study
and fine-grained optimization are required to maximize per-
formance, our methodology is effective at approximating
perceptual thresholds with respect to a local image trans-
formation. We are currently performing an extended study
of our approach against different backbone architectures,
training regimes, and optimization strategies. We also in-
tend to apply our methodology as the first stage in automatic
composite quality improvement.
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MacAskill, Richard Höchenberger, Hiroyuki Sogo, Erik
Kastman, and Jonas Kristoffer Lindeløv. Psychopy2: Exper-
iments in behavior made easy. Behavior research methods,
51(1):195–203, 2019.

[38] Eli Peli. Contrast in complex images. JOSA A, 7(10):2032–
2040, 1990.

[39] Nikolay Ponomarenko, Oleg Ieremeiev, Vladimir Lukin,
Karen Egiazarian, Lina Jin, Jaakko Astola, Benoit Vozel,
Kacem Chehdi, Marco Carli, Federica Battisti, et al. Color
image database tid2013: Peculiarities and preliminary re-
sults. In european workshop on visual information process-
ing (EUVIP), pages 106–111. IEEE, 2013.

[40] Alec Radford, Luke Metz, and Soumith Chintala. Un-
supervised representation learning with deep convolu-
tional generative adversarial networks. arXiv preprint
arXiv:1511.06434, 2015.

[41] Alan R Robertson. The cie 1976 color-difference formulae.
Color Research & Application, 2(1):7–11, 1977.

[42] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-
net: Convolutional networks for biomedical image segmen-
tation. In International Conference on Medical image com-
puting and computer-assisted intervention, pages 234–241.
Springer, 2015.

[43] Bryan C Russell, Antonio Torralba, Kevin P Murphy, and
William T Freeman. Labelme: a database and web-based
tool for image annotation. International journal of computer
vision, 77(1-3):157–173, 2008.

[44] Walter J Scheirer, Samuel E Anthony, Ken Nakayama, and
David D Cox. Perceptual annotation: Measuring human
vision to improve computer vision. IEEE transactions on
pattern analysis and machine intelligence, 36(8):1679–1686,
2014.

[45] Hamid R Sheikh and Alan C Bovik. Image information
and visual quality. IEEE Transactions on image processing,
15(2):430–444, 2006.

[46] Hamid R Sheikh, Alan C Bovik, and Gustavo De Veciana.
An information fidelity criterion for image quality assess-
ment using natural scene statistics. IEEE Transactions on
image processing, 14(12):2117–2128, 2005.

[47] Hamid R Sheikh, Zhou Wang, Lawrence Cormack, and
Alan C Bovik. Live image quality assessment database re-
lease 2 (2005), 2005.

[48] Jianping Shi, Li Xu, and Jiaya Jia. Just noticeable defocus
blur detection and estimation. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pages 657–665, 2015.

[49] Ran Shi, King Ngi Ngan, Songnan Li, Raveendran Parames-
ran, and Hongliang Li. Visual quality evaluation of im-
age object segmentation: Subjective assessment and ob-
jective measure. IEEE Transactions on Image Processing,
24(12):5033–5045, 2015.

[50] Hossein Talebi and Peyman Milanfar. Nima: Neural im-
age assessment. IEEE Transactions on Image Processing,
27(8):3998–4011, 2018.

[51] Christian J Van den Branden Lambrecht and Olivier Ver-
scheure. Perceptual quality measure using a spatiotemporal
model of the human visual system. In Digital Video Com-
pression: Algorithms and Technologies 1996, volume 2668,
pages 450–461. International Society for Optics and Photon-
ics, 1996.

[52] Cuong T Vu, Eric C Larson, and Damon M Chandler. Visual
fixation patterns when judging image quality: Effects of dis-
tortion type, amount, and subject experience. In 2008 IEEE
Southwest Symposium on Image Analysis and Interpretation,
pages 73–76. IEEE, 2008.

[53] Thomas SA Wallis and Peter J Bex. Image correlates of
crowding in natural scenes. Journal of Vision, 12(7):6–6,
2012.

[54] Ching-Yang Wang, Shiuh-Ming Lee, and Long-Wen Chang.
Designing jpeg quantization tables based on human vi-
sual system. Signal Processing: Image Communication,
16(5):501–506, 2001.

[55] Zhou Wang and Qiang Li. Video quality assessment using a
statistical model of human visual speed perception. JOSA A,
24(12):B61–B69, 2007.

[56] Andrew B Watson and Denis G Pelli. Quest: A bayesian
adaptive psychometric method. Perception & psychophysics,
33(2):113–120, 1983.

[57] Felix A Wichmann and N Jeremy Hill. The psychometric
function: I. fitting, sampling, and goodness of fit. Perception
& psychophysics, 63(8):1293–1313, 2001.

[58] Jianxiong Xiao, James Hays, Krista A Ehinger, Aude Oliva,
and Antonio Torralba. Sun database: Large-scale scene



recognition from abbey to zoo. In 2010 IEEE Computer So-
ciety Conference on Computer Vision and Pattern Recogni-
tion, pages 3485–3492. IEEE, 2010.

[59] Su Xue, Aseem Agarwala, Julie Dorsey, and Holly Rush-
meier. Understanding and improving the realism of im-
age composites. ACM Transactions on Graphics (TOG),
31(4):84, 2012.

[60] Aron Yu and Kristen Grauman. Just noticeable differences
in visual attributes. In Proceedings of the IEEE International
Conference on Computer Vision, pages 2416–2424, 2015.

[61] Fisher Yu and Vladlen Koltun. Multi-scale context
aggregation by dilated convolutions. arXiv preprint
arXiv:1511.07122, 2015.

[62] Liheng Zhang, Guo-Jun Qi, Liqiang Wang, and Jiebo Luo.
Aet vs. aed: Unsupervised representation learning by auto-
encoding transformations rather than data. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 2547–2555, 2019.

[63] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shecht-
man, and Oliver Wang. The unreasonable effectiveness of
deep features as a perceptual metric. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 586–595, 2018.



Towards Unsupervised Image Harmonisation

Alan Dolhasz a, Carlo Harvey b and Ian Williams c

Digital Media Technology Lab, Birmingham City University, Birmingham, UK
{alan.dolhasz, carlo.harvey, ian.williams}@bcu.ac.uk

Keywords: image compositing, harmonisation, artifact detection, end-to-end compositing, deep learning

Abstract: The field of image synthesis intrinsically relies on the process of image compositing. This process can be auto-
matic or manual, and depends upon artistic intent. Compositing can introduce errors, due to human-detectable
differences in the general pixel level transforms of component elements of an image composite. We report on
a pilot study evaluating a proof-of-concept automatic image composite harmonisation system consisting of a
state-of-the-art deep harmonisation model and a perceptually-based composite luminance artifact detector. We
evaluate the performance of both systems on a large data-set of 68128 automatically generated image com-
posites and find that without any task-specific adaptations, the end-to-end system achieves comparable results
to the baseline harmoniser fed with ground truth composite masks. We discuss these findings in the context of
extending this to an end-to-end, multi-task system.

1 INTRODUCTION

Image compositing is a common task in image pro-
cessing where an object from one image is extracted
and inserted into another image, referred to as the
scene, with the aim of creating a plausible, realis-
tic result (Wright, 2013). Due to inherent dispar-
ities in appearance between the object and scene,
commonly resulting from differences in illumination,
camera intrinsics, post-processing, encoding or com-
pression, component elements of a composite often
require post-processing in order to create a com-
pelling and realistic final result. To address these
issues, a wide range of automatic compositing tech-
niques have been proposed. These include alpha mat-
ting - linear combinations of object and scene pixel
values (Porter and Duff, 1984), gradient-domain op-
timization techniques (Pérez et al., 2003; Agarwala
et al., 2004; Levin et al., 2004), visual appearance
transfer (Reinhard et al., 2001; Lalonde and Efros,
2007) and multi-scale methods (Burt and Adelson,
1983a,b; Sunkavalli et al., 2010).

More recently, deep learning (DL) based ap-
proaches have achieved considerable success in the
domain of image compositing. Notably Tsai et al.
(2017) adopt the denoising autoencoder (DAE) (Vin-
cent et al., 2008) attempting to learn the composit-

a https://orcid.org/0000-0002-6520-8094
b https://orcid.org/0000-0002-4809-1592
c https://orcid.org/0000-0002-0651-0963

ing function directly from image data, including se-
mantic information derived from ground truth seman-
tic segmentation labels. Chen and Kae (2019) lever-
age a generative adversarial network (GAN) to learn
both colour-based and geometric transformations in
order to perform compositing of arbitrary objects into
arbitrary scenes. Conditional GANs have also been
adopted to address this problem, by learning to model
joint distributions of different object classes and their
interactions in image space (Azadi et al., 2018), as
well as performing colour and gradient blending be-
tween composite elements, which have been semanti-
cally aligned.

These existing methods are not without limita-
tions. Firstly, they focus on creation of new compos-
ites, thus requiring object/scene segmentation masks
to be available at input. This limits their use for
cases where these are not available, such as improve-
ment of existing image composites. Secondly, they
do not explicitly leverage human perceptual charac-
teristics, such as their sensitivity to various image
artifacts or magnitude of mismatch between object
and scene (Dolhasz et al., 2016). Finally, the masks
supplied to such algorithms provide only a binary
indication whether a given pixel belongs to the ob-
ject or the scene. This implies the entire region re-
quires correction and induces a generic transforma-
tion, such as colour transfer, uniformly across the re-
gion. This can result in the harmonisation algorithm
over-compensating and generating a suboptimal out-



put, even compared to the unprocessed input compos-
ite.

We argue that perceptual detection of compos-
ite artifacts should be explicitly modelled in deep-
learning-based image compositing and harmonisa-
tion. Our reasoning behind this is as follows. Firstly,
it enables design of end-to-end harmonisation sys-
tems without the need for manually supplied ob-
ject masks, allowing harmonisation of composites for
which masks are not available. Secondly, the explicit
encoding of the location and perceptual magnitude
of errors in the output of the model allows the pro-
cess to take advantage of the benefits of multi-task
learning in terms of generalisation (Ruder, 2017; Ran-
jan et al., 2017). The potential applications of such
automatic compositing systems are wide-ranging, in-
cluding improvement of legacy content, detection of
image manipulations and forgery, perceptually-based
metrics and image synthesis.

Consequently, in this study, we design a proof-
of-concept end-to-end compositing pipeline consist-
ing of a detector network, which outputs masks cor-
responding to regions requiring harmonisation, and a
harmoniser network, which corrects the detected re-
gions. We then assess the impact of object masks
predicted by the detector on the accuracy of the
harmoniser, compared to using ground truth object
masks. Our study adopts two existing networks
- the Deep Harmonisation algorithm proposed by
Tsai et al. (2017) as the harmoniser network, and a
perceptually-based fully convolutional network pro-
posed by Dolhasz et al. (2019) as the detector net-
work.

We show that our prototype end-to-end system,
using the the detector network without any task-
specific adaptations or re-training, produces results
which are comparable to those obtained using ground
truth masks. To our knowledge this is the first work
investigating the combination of a deep-learning-
based detection model with a composite harmonisa-
tion one to both detect and fix composites. We are
currently developing a complete, end-to-end version
of the model, trained specifically for this purpose.

2 RELATED WORK

2.1 Image Compositing &
Harmonisation

Automatic image compositing and harmonisation are
both active and challenging problems in the domain
of image understanding and processing. Image com-

positing concerns the entire process of combining
regions from different source images into a plausi-
ble whole, while image harmonisation focuses on the
problem of matching the various appearance features
between the object and scene, such as noise, contrast,
texture or blur, while assuming correctly aligned ge-
ometric and illumination properties (Sunkavalli et al.,
2010).

Similarly to the problem of image in-painting,
compositing and harmonisation are both ill-posed
problems (Guillemot and Le Meur, 2013). For a given
region requiring correction many different arrange-
ments of pixels could be deemed plausible. This is
in contrast to problems where the solution is unique.
Depending on the content and context of an image
composite, some scene properties, and thus required
object corrections, may be inferable from the infor-
mation contained within the image or its metadata,
such as the characteristics of the illuminant (Shi et al.,
2016), colour palette, contrast range or the camera re-
sponse function. Other properties, such as an object’s
albedo, texture or shape are often unique to the object
and cannot be derived directly from contextual infor-
mation in the scene. While methods for approximat-
ing these do exist (Gardner et al., 2017), they are dif-
ficult to integrate into end-to-end systems and can be
difficult to parameterise. The recent successes in DL
have motivated a number of approaches (Tsai et al.,
2017; Azadi et al., 2018; Chen and Kae, 2019) which
attempt to exploit the huge amount of natural imagery
available in public datasets in order to learn the map-
ping between a corrupted composite image and a cor-
rected composite, or natural image.

2.2 Multi-task Learning

Due to the abundance of natural image data and the
ill-posed nature of the compositing problem, DL ap-
proaches are well-suited for this task. However, su-
pervised DL methods require large amounts of an-
notated data in order to learn and generalise well.
This requirement grows along with the complexity
of a problem and the desired accuracy. Two popular
DL paradigms, unsupervised learning and multi-task
learning, are often used to address the issues of data
labeling and model generalisation.

In recent years many tasks in image understand-
ing have achieved state-of-the-art performance by in-
corporating multi-task learning Evgeniou and Pontil
(2004), for example in predicting depth and normals
from a single RGB image (Eigen and Fergus, 2015),
detection of face landmarks (Zhang et al., 2014) or
simultaneous image quality and distortion estimation
Kang et al. (2015). This is afforded by the implicit



regularization that training a single model for mul-
tiple related tasks imposes (Caruana, 1997) and the
resulting improved generalisation.

State-of-the-art image harmonisation methods fo-
cus largely on improving composites in scenarios
where the identity of pixels belonging to the object
and scene are known a priori. Tsai et al. (2017) use a
DAE-based architecture to map corrupted composites
to corrected ones, incorporating a two-task paradigm,
which attempts to both correct the composite, as well
as segmenting the scene. However, they do not ex-
plicitly condition the network to learn anything more
about the corruption, such as its magnitude, type or
location. Instead they provide location information at
input time, using a binary mask. Chen and Kae (2019)
uses a similar approach - inputting the object mask
at training time, however also introducing mask seg-
mentation and refinement within the GAN, in addition
to geometric transformations. The segmentation net-
work, as part of the adversarial training process, dis-
criminates towards ground truth binary masks as an
output - omitting any perceptual factor in the discrimi-
nation task. This achieves improved results compared
to the DAE, however at the cost of a more complex
architecture and adversarial training.

Due to the many dimensions along which com-
binations of object and scene may vary, compositing
systems should be equipped to assess such differences
before attempting to correct them. Kang et al. (2015)
shows that a multi-task approach is an efficient way
to ensure that distortions are encoded by the model.

3 METHODOLOGY

3.1 Motivation

Whilst multi-task learning has been shown to be effi-
cient in the coupled process of detecting and correct-
ing arbitrary pixel level transformations within im-
ages, perceptually-based encoding of artifacts within
masks has not yet been shown to be effective in the
image harmonisation field. Before approaching the
multi-task model, it is necessary to prove empirically
that this end-to-end process is viable. Thus we design
an end-to-end approach using two existing standalone
networks for both detection and harmonisation to test
the efficacy of these perceptual masks in the domain.

3.2 Approach

Our overarching goal is the design of an end-to-end
automatic compositing pipeline, capable of detec-
tion and correction of common compositing artifacts,

Figure 1: Illustration of research methodology adopted in
this work.

without the need for specification of an object mask.
In order to evaluate the effectiveness of this approach
we propose to assess predicted perceptually-informed
object masks rather than ground truth object masks as
input to the deep harmonisation algorithm. We then
measure similarity between ground truth images and
composites corrected with the harmonisation algo-
rithm using either the original synthetic binary masks
Ms or the perceptually-based masks predicted by the
detector Mp. Accordingly, we refer to composites har-
monised using ground truth masks as Cs and compos-
ites generated by the end-to-end system as Cp.

We evaluate the hypothesis that the performance
of an end-to-end detection and harmonisation model
is comparable to a harmonisation model using man-
ually created object masks. Confirmation of this hy-
pothesis would support our case for incorporating ex-
plicit detection of composite artefacts into end-to-
end image composite harmonisation systems. Our re-
search methodology is summarised in Figure 1.

3.3 Detector and Harmoniser Models

Both the detector (Dolhasz et al., 2019) and the har-
moniser (Tsai et al., 2017) are deep, image-to-image,
fully convolutional autoencoder networks. The detec-
tor takes a single image as input and generates a 2-



Figure 2: System overview: illustration of the detector and harmoniser combined into an end-to-end composite harmonisation
system. A synthetic composite image is first supplied to the detector, which outputs a 2-channel mask indicating detected
negative and positive (not pictured here) luminance shifts. This mask is converted to a single-channel representation by taking
a maximum over predicted pixel-wise probabilities and fed to the harmoniser network. The harmoniser then produces a
harmonised composite, which we compare against the ground truth.

Figure 3: Dataset generation process adapted from Tsai
et al. (2017): a) source image sampled from MSCOCO, b)
corresponding object mask, c) target image, d) target image
object mask, e) result of luminance transfer (Reinhard et al.,
2001) of source - c), to target - e

channel output mask, which encodes probabilities for
each pixel, p, in the input image as being affected by
a negative (channel 0) or a positive (channel 1) per-
ceptually suprathreshold luminance offset. We com-
bine these two suprathreshold channels by taking a
pixel-wise maximum max(p0, p1). This way we gen-
erate a single mask in the same format as Ms from
MSCOCO, where each pixel encodes the probability
of a suprathreshold luminance offset. We do not ap-
ply any modifications to the harmoniser and adopt the
authors’ original trained implementation. The final
detector+harmoniser system can be see in Figure 2.

3.4 Dataset

To perform a fair comparison, we follow the compos-
ite generation approach of Tsai et al. (2017). Specif-
ically, we sample pairs of images containing objects
belonging to the same semantic category (e.g. per-
son, dog, bottle etc.) from the MSCOCO dataset (Lin
et al., 2014). Using their corresponding object masks,
we perform statistical colour transfer based on his-
togram matching, proposed by Reinhard et al. (2001).
This process can be see in Figure 3. This colour trans-
fer is performed between object regions of the same
semantic category. As the detector is only conditioned
for luminance offsets, we perform colour transfer only

on the luminance channel of Lab colourspace. We
generate a total of 68128 composites and correspond-
ing ground truth images. We also extract correspond-
ing the ground truth masks for comparison against the
masks predicted by the detector.

3.5 Similarity Metrics

To evaluate each of the two approaches, we calculate
similarity metrics between ground truth images Cgt
and composites corrected by the methods under test:
Cs and Cp. We adopt the objective metrics used in the
original work, i.e. Mean Squared Error (MSE):

MSE =
1
N

n

∑
i=0

(Yi− Ŷi)
2 (1)

where Y is the ground truth and Ŷ is the harmonised
image (either Cp or Cs), and Peak Signal-to-Noise ra-
tio (PSNR):

PSNR = 10log10

( R2

MSE

)
(2)

here R is the maximum possible pixel intensity - 255
for an 8 bit image. In addition, we leverage the
Learned Perceptual Image Patch Similarity (LPIPS)
(Zhang et al., 2018), which measures similarity based
on human perceptual characteristics. We denote these
errors with subscripts referring to the method the
composite was fixed with, e.g. MSEp for MSE be-
tween the ground truth image and corresponding com-
posite fixed using predicted masks; MSEs for MSE
between ground truth and a composite fixed using the
original MSCOCO masks.

3.6 Procedure

Using our generated composite dataset we first eval-
uate the harmoniser with ground truth masks. We



Figure 4: A comparison of the distributions for both Cs (composites corrected with synthetic ground truth masks) and Cp
(corrected with masks predicted by the detector) with the number of images in each bin for each metric value. This is shown
for: (a) MSE, (b) PSNR and (c) LPIPS. Larger values of MSE and LPIPS indicate poorer performance, whilst this is true for
smaller values of PSNR.

Figure 5: The image-wise error differentials for Cp-Cs. This is shown for each of the three metrics: (a) MSE, (b) PSNR and (c)
LPIPS. Note, negative values for MSE and LPIPS indicate images for which Cp (composites corrected with masks predicted
by the detector) achieves lower error than Cs (composites corrected with synthetic ground truth masks). For PSNR, this is true
for positive values.

then use the same dataset to generate predicted ob-
ject masks using the detector and feed these along
with the corresponding composite images to the har-
moniser. We obtain two sets of corrected composites:
composites corrected using the ground truth masks Cs
and composites fixed using masks predicted by the
detector] Cp. We then calculate similarity metrics be-
tween the ground truth images used to generate the
composites in the first place, and each of the two sets
of corrected images Cs and Cp. These are reported in
the following section.

4 RESULTS

The results of our evaluation can be seen in Figure
4, which shows distributions of each of the similarity
metrics calculated between ground truth images and
composites fixed using Cs and Cp respectively. Mean
similarity metrics can be seen in Table 1. Overall,
masks predicted by the detector yield higher average
errors across all three metrics compared to the ground

truth masks, however the magnitude of these differ-
ences is small for each of the metrics. Figure 5 shows
distributions of image-wise error differentials for both
techniques.

Metric harmoniser detector + harmoniser

MSE 19.55 22.65
PSNR 35.81 35.18
LPIPS 0.0227 0.0292

Table 1: Means of similarity metrics for both techniques
evaluated against ground truth: harmoniser, and the detec-
tor+harmoniser. Lower is better for LPIPS and MSE, higher
is better for PSNR.

5 DISCUSSION

Our results indicate that using detected, instead of
ground truth object masks can yield comparable re-
sults when performing automatic image composite



Figure 6: Examples of the harmoniser with ground truth masks over-compensating, and applying colour shifts to compen-
sate a luminance transform, resulting in suboptimal output. From left: a) ground truth, b) input composite, c) output of
detector+harmoniser, d) output of harmoniser with ground truth masks, e) masks predicted by detector, f) ground truth masks

harmonisation. Errors obtained using ground truth
masks are on average lower compared to those ob-
tained using predicted masks, however in a number
of cases the situation is reversed. For example, Fig-
ure 6c and d shows cases of the harmoniser over-
compensating, while the detector+harmoniser com-
bination achieves a more natural-looking result. We
stress that these results were obtained with no addi-
tional training.

Further investigation indicates particular scenar-
ios where this occurs. In some cases, the harmoni-
sation algorithm applies an inappropriate correction,
rendering a higher error for Cs compared to the un-
harmonised input. Then, if Mp does not approximate
Ms well, is blank (no detection) or its average inten-
sity is lower than that of Ms, the additional error in-
duced by the harmonisation algorithm is minimised,
rendering lower errors for Cp. This can be seen in
both images in 6d. This indicates the benefit of a
perceptually motivated approach to mask prediction,
allowing the influence over the weight of the trans-
formation applied by the harmoniser. We also no-
tice that the deep harmonisation network tends to ap-
ply colour transformations regardless of whether they
are required. In some cases, the perceptually-based
masks mitigate this problem. Images showing exam-
ples of comparable performance of the two methods
can be found in Figure 7. Subfigures c and d show the
results of harmonisation using the apporaches under
test and subfigures e and f show Mp and Ms respec-
tively.

Due to the nature of the detector network currently
operating solely on luminance transforms, a further
benefit to the multi-task learning paradigm is the gen-
eralisability to arbitrary pixel level transforms, for ex-
ample colour shifts. The binary masks accepted by

harmoniser networks currently do not separate across
these transforms, they treat them all homogeneously.
A perceptually motivated approach to the predicted
mask can encode, on a feature-by-feature basis, the
perceptual likelihood of harmonisation required. This
is not to say necessarily that deep harmonisation net-
works cannot learn this behaviour, but further sup-
port to encode this non-linearity at the input to the
network and/or by explicit optimisation at the output,
particularly in a multi-task context, would likely ben-
efit performance and improve generalisation (Caru-
ana, 1997).

6 CONCLUSION

These findings, obtained by combination of off-
the-shelf models, not modified or re-trained for this
specific task, indicate that information about location
and magnitude of composite artifacts can be useful in
improving the performance of existing compositing
and harmonisation approaches. Furthermore, our re-
sults show that the requirement for provision of object
masks for such algorithms can be relaxed or removed
entirely by the explicit combination of composite ar-
tifact detection with their correction. This provides
a basis for investigation in future work of joint mod-
elling of both the detection and correction of compos-
ite image artifacts, e.g. under a multi-task learning
paradigm.



Figure 7: Comparison of harmonisation outputs from our evaluation. From left to right: a) ground truth, b) input composite,
c) corrected with detector+harmoniser Cp, d) corrected with ground truth masks + harmoniser Cs, e) Detected masks Mp, f)
ground truth masks Ms. Masks in colour indicate the raw output of the detector, where the direction of detected luminance
shifts is indicated - red for negative and green for positive shifts.
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Abstract. Many image synthesis tasks, such as image compositing, rely
on the process of image harmonisation. The goal of harmonisation is to
create a plausible combination of component elements. The subjective
quality of this combination is directly related to the existence of human-
detectable appearance differences between these component parts, sug-
gesting that consideration for human perceptual tolerances is an impor-
tant aspect of designing automatic harmonisation algorithms. In this
paper, we first investigate the impact of a perceptually-calibrated com-
posite artifact detector on the performance of a state-of-the-art deep
harmonisation model. We first evaluate a two-stage model, whereby the
performance of both pre-trained models and their naive combination is
assessed against a large data-set of 68128 automatically generated image
composites. We find that without any task-specific adaptations, the two-
stage model achieves comparable results to the baseline harmoniser fed
with ground truth composite masks. Based on these findings, we design
and train an end-to-end model, and evaluate its performance against a
set of baseline models. Overall, our results indicate that explicit modeling
and incorporation of image features conditioned on a human perceptual
task improves the performance of no-reference harmonisation algorithms.
We conclude by discussing the generalisability of our approach in the
context of related work.

Keywords: image compositing · harmonisation · artifact detection ·
end-to-end compositing · deep learning

1 Introduction

Image harmonisation is an important task in image compositing and synthesis,
aiming to minimise appearance-based differences between individual elements
of a composite, in order to produce a perceptually plausible end result [32].
An image composite commonly consists of at least one object, inserted into a
background image, referred to as the scene. As the object and scene are com-
monly captured under different environmental conditions, visible appearance
mismatches between them may exist, due to differences in illumination, cam-
era intrinsics, post-processing, encoding or compression. Thus, the goal of image
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harmonisation is to minimise such differences and create a realistic result. This
process can be performed manually by compositing artists, however, many au-
tomatic approaches have been proposed, including alpha matting - linear combi-
nations of object and scene pixel values [23], gradient-domain optimization tech-
niques [22, 1, 20], statistical appearance transfer [25, 19] and multi-scale methods
[4, 5, 29].

With the advent of deep learning (DL), automatic image synthesis tech-
niques have garnered renewed interest and afforded considerable improvements
in state-of-the-art image compositing and harmonisation techniques. Methods
using variants of convolutional autoencoders (AEs) have been successfully used
to directly approximate the harmonisation function, in a supervised learning
setting. Notably, Tsai et al. (2017) [30] use a convolutional AE in a multi-task
setting to both segment and harmonise an input image, provided the target ob-
ject mask. Another approach [7] uses a generative adversarial network (GAN)
to perform both colour and geometric transformations, pre-training their model
on synthetically-generated data. Conditional GANs have also been applied in
this context, by learning to model joint distributions of different object classes
and their relationships in image space. This allows for semantically similar re-
gions to undergo similar transformations [2]. A more recent method combines
state-of-the art attention mechanisms and GAN-based architectures with explicit
object-scene knowledge implemented through masked and partial convolutions
and provide a dedicated benchmark image harmonisation dataset, dubbed iHar-
mony [8].

A common requirement of these state-of-the-art techniques is the provision of
binary object/scene segmentation masks at input, both during training and infer-
ence. These masks serve as an additional feature, identifying the corresponding
image pixels that require harmonisation. As such, these methods are applicable
to scenarios where new composites are generated, and these masks are avail-
able. However, in cases where these ground truth masks are not available, these
techniques can not be easily applied without human intervention, limiting their
application to scenarios such as harmonisation of legacy composites. Moreover,
existing methods do not explicitly leverage human perception - the usual tar-
get audience of image composites. This includes human sensitivity to different
local image disparities between object and scene, shown to correlate with sub-
jective realism ratings [12]. Lastly, binary object masks used in these techniques
provide only limited information about the nature of the required corrections,
indicating only the area where corrections are needed. This can result in the
harmonisation algorithm over- or under-compensating in different local regions
of the composite.

In a recent pilot study [11], the authors argue that explicit modeling of the
perception of compositing artifacts, in addition to their improvement, would al-
low for harmonisation algorithms to be used in a no reference setting, whereby
the input mask is not required at inference time. Thus, the model performs
both the detection and harmonisation task. They also show that combining two
off-the-shelf, pre-trained models – a detector [10] and a harmoniser [30] – can
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achieve comparable results to mask-based state-of-the-art harmonisation algo-
rithms. This enables design of end-to-end harmonisation networks without the
need for input object masks, allowing automatic harmonisation of content for
which masks are not readily available. The authors also claim that the explicit
encoding of the location and perceptual magnitude of errors in the model could
allow the process to take advantage of the benefits of multi-task learning, fea-
ture sharing and attention mechanism in terms of generalisation [24, 26]. The
potential applications of such automatic compositing systems are wide-ranging,
including improvement of legacy content, detection of image manipulations and
forgery, perceptually-based metrics and image synthesis.

In this paper, we recapitulate and extend this work to an end-to-end model
designed, trained and evaluated from scratch. First, we present the original proof-
of-concept two-stage compositing pipeline [11]. This consists of a detector net-
work, which outputs masks corresponding to regions in an input image requiring
harmonisation, and a harmoniser network, which corrects the detected regions.
We then evaluate the performance of the harmoniser based on using object masks
predicted by the detector, versus using ground truth object masks. Based on the
evaluation of the two-stage model, we then propose a single end-to-end model,
and compare its performance to a set of baselines trained from scratch on the
challenging iHarmony dataset, as well as the synthetic COCO-Exp dataset from
the original study [11]. We show that our end-to-end model outperforms the base-
lines on both datasets. This indicates the usefulness of the pre-trained perceptual
features to the compositing task using two different end-to-end architectures. To
our knowledge, this is the first work investigating an end-to-end combination of
a DL-based feature extractor, conditioned on a perceptual task, with an image
harmonisation network to perform no reference image harmonisation.

The remainder of the paper is structured as follows: Section 2 introduces re-
lated work and discusses state-of-the-art techniques, Section 3 describes the orig-
inal methodology adopted for the two-stage model evaluation, Section 4 presents
the results of this evaluation and Section 5 discusses the findings [11]. In Section
6 we detail the methodology, architecture and optimisation details of the pro-
posed end-to-end models, which are evaluated in Section 7. Finally, in Section
8, we review our findings in the context of the original study and wider appli-
cation to image harmonisation. We also discuss the strengths and weaknesses
of our approach, before concluding and considering future research directions in
Section 9.

2 Related Work

2.1 Image Compositing & Harmonisation

Automatic image compositing and harmonisation are both active and challeng-
ing problems in the domain of image understanding, synthesis and processing.
While, image compositing concerns the entire process of combining regions from
different source images into a plausible whole, image harmonisation focuses on
the problem of matching the various appearance features between the object and
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scene, such as noise, contrast, texture or blur, while assuming correctly aligned
geometric and illumination properties [29].

Similarly to the problem of image in-painting, compositing and harmonisa-
tion are both ill-posed problems [16]. For a given region requiring correction,
many different arrangements of pixels could be deemed plausible. This is in con-
trast to problems where the solution is unique. Depending on the content and
context of an image composite, some scene properties, and thus required object
corrections, may be inferred from the information contained within the image or
its metadata, such as the characteristics of the illuminant [27], colour palette,
contrast range or the camera response function. Other properties, such as an
object’s albedo, texture or shape are often unique to the object and cannot be
derived directly from contextual information in the scene. While methods for
approximation of these properties do exist [15], they are difficult to integrate
into end-to-end systems and can be challenging to parametrise. The recent suc-
cesses in DL have motivated a number of approaches [30, 2, 7, 8] which attempt
to exploit the huge amount of natural imagery available in public datasets in or-
der to learn the mapping between a corrupted composite image and a corrected
composite, or natural image.

2.2 Multi-task Learning, Feature Sharing & Attention

Due to the abundance of natural image data and the ill-posed nature of the
compositing problem, DL approaches are well-suited for this task. However, su-
pervised DL methods require large amounts of annotated data in order to learn
and generalise well. This requirement grows along with the complexity of a prob-
lem and the desired accuracy. In order to tackle this issue, many architectural
considerations have been proposed, many of which focus on learning good feature
representations, which generalise well between tasks.

Multi-task learning approaches rely on performing multiple related tasks in
order to learn better feature representations. In recent years many tasks in im-
age understanding have achieved state-of-the-art performance by incorporating
multi-task learning [14], for example in predicting depth and normals from a
single RGB image [13], detection of face landmarks [36] or simultaneous image
quality and distortion estimation [17]. This is afforded by the implicit regular-
isation that training a single model for multiple related tasks imposes [6], and
the resulting improved generalisation. Feature sharing approaches combine deep
features from related domains or tasks in order to create richer feature repre-
sentations for a given task. This is similar to the multi-task paradigm, however
instead of sharing a common intermediate feature representation, features from
one or multiple layers of two or more networks are explicitly combined. The
Deep Image Harmonisation (DIH) model [30] adopts both these paradigms, by
combining the tasks of image semgentation and harmonisation and sharing deep
features of both task branches. Finally, attention mechanisms [9] can also be used
to learn the relative importance of latent features for different combinations of
task and input sample.
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2.3 No more masks

State-of-the-art image harmonisation methods focus largely on improving com-
posites in scenarios where the identity of pixels belonging to the object and scene
are known a priori. For example, the DIH approach [30] uses a AE-based archi-
tecture to map corrupted composites to corrected ones, incorporating a two-task
paradigm, which attempts to both correct the composite, as well as segmenting
the scene. However, this approach does not explicitly condition the network to
learn anything more about the corruption, such as its magnitude, type or loca-
tion. Instead object location information is explicitly provided at input, using
a binary mask. A similar approach [7] inputs the object mask at training time,
while also introducing mask segmentation and refinement within a GAN archi-
tecture, in addition to learning of geometric transformations of the object. The
segmentation network, as part of the adversarial training process, discriminates
towards ground truth binary masks as an output - omitting any perceptual fac-
tor in the discrimination task. This achieves improved results compared to the
AE, however at the cost of a more complex architecture and adversarial train-
ing. Due to the many dimensions along which combinations of object and scene
may vary, compositing systems should be equipped to encode such differences
before attempting to correct them. Kang et al. (2015) [17] show that a multi-
task approach is an efficient way to ensure that distortions are appropriately
encoded by the model. Other approaches to this problem include self-supervised
pre-training to enforce equivariance of of the latent representation to certain
input transformations [34], which has been used to train perceptually-aligned
local transformation classifiers [10], also used in the proposed model.

3 Two-Stage Model: Methodology

3.1 Motivation

Whilst multi-task learning has been shown to be efficient in the coupled process
of detecting and correcting arbitrary pixel level transformations within images,
perceptually-based encoding of artifacts within masks has not yet been shown to
be effective in the image harmonisation field. Before approaching the multi-task
model, it is necessary to prove empirically that this end-to-end process is viable.
Thus we first design a two-stage approach using two existing standalone networks
for both detection and harmonisation to test the efficacy of these perceptual
masks in this domain.

3.2 Approach

Our overarching goal is the design of an end-to-end automatic compositing
pipeline, capable of detection and correction of common compositing artifacts,
without the need for specification of an object mask. In order to evaluate the
effectiveness of this approach, we assess predicted, perceptually-informed object
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masks, rather than ground truth object masks, as input to the deep harmoni-
sation algorithm. We then measure similarity between ground truth images and
composites corrected with the harmonisation algorithm, using either the orig-
inal synthetic binary masks Ms or the perceptually-based masks predicted by
the detector Mp. Accordingly, we refer to composites harmonised using ground
truth masks as Cs, and composites generated by the end-to-end system as Cp.

Fig. 1: Illustration of research methodology adopted in the two-stage model eval-
uation. Reprinted from [11].

We evaluate the hypothesis that the performance of an end-to-end detec-
tion and harmonisation model is comparable to a harmonisation model using
manually created object masks. Confirmation of this hypothesis would support
our case for incorporating explicit detection of composite artefacts into end-
to-end image composite harmonisation systems. Our research methodology is
summarised in Figure 1.

3.3 Detector and Harmoniser Models

Both the detector (referred to as the PTC henceforth) [10] and the harmoniser
(referred to as the DIH) [30] are deep, image-to-image, fully convolutional au-
toencoder networks. The PTC takes a single image as input and generates a
2-channel output mask, which encodes probabilities for each pixel, p, in the in-
put image as being affected by a negative (channel 0) or a positive (channel 1)
perceptually suprathreshold exposure offset. We combine these two suprathresh-
old channels by taking a pixel-wise maximum max(p0, p1). This way we generate



8 A. Dolhasz et al.

Fig. 2: System overview: illustration of the detector and harmoniser combined
into a two-stage composite harmonisation system. A synthetic composite image is
first supplied to the detector, which outputs a 2-channel mask indicating detected
negative and positive (not pictured here) exposure shifts. This mask is converted
to a single-channel representation by taking a maximum over predicted pixel-
wise probabilities and fed to the harmonisation network, which then produces a
harmonised composite, which we compare against the ground truth. Reprinted
from [11].

a single mask of the same resolution as Ms, with the difference that each pixel
encodes the probability of a suprathreshold exposure offset. We do not apply
any modifications to the DIH and adopt the authors’ original trained implemen-
tation. The final detector+harmoniser (PTC+DIH) system can be see in Figure
2.

3.4 COCO-Exp Dataset

To perform a fair comparison, we follow the composite generation approach of
[30]. Specifically, we sample pairs of images containing objects belonging to the
same semantic category (e.g. person, dog, bottle etc.) from the MSCOCO dataset
[21]. Using their corresponding object masks, we perform statistical colour trans-
fer based on histogram matching, proposed by [25]. This process can be see in
Figure 3. This colour transfer is performed between object regions of the same
semantic category. As the detector is only conditioned for exposure offsets, we
perform colour transfer only on the luminance channel of Lab colourspace. We
generate a total of 68128 composites and corresponding ground truth images.
We also extract corresponding ground truth masks for comparison against the
masks predicted by the detector. For the sake of brevity, we refer to this dataset
as COCO-Exp throughout the remainder of this paper.

3.5 Similarity Metrics

To evaluate each of the two approaches, we calculate similarity metrics between
ground truth images Cgt and harmonised images, corrected by the methods
under test: Cs (harmonised using ground truth masks), and Cp (harmonised
using predicted masks). We adopt the objective metrics used in the original
work, i.e. Mean Squared Error (MSE):
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Fig. 3: Dataset generation process adapted from [30]: a) source image sampled
from MSCOCO, b) corresponding object mask, c) target image, d) target image
object mask, e) result of luminance transfer [25] of source - c), to target - e.
Reprinted from [11].

MSE =
1

N

n∑

i=0

(Yi − Ŷi)2 (1)

where Y is the ground truth and Ŷ is the harmonised image (either Cp or Cs),
and Peak Signal-to-Noise ratio (PSNR):

PSNR = 10 log10

( R2

MSE

)
(2)

here R is the maximum possible pixel intensity - 255 for an 8 bit image. In
addition, we leverage the Learned Perceptual Image Patch Similarity (LPIPS)
[35], which measures similarity based on human perceptual characteristics. We
denote these errors with subscripts referring to the method the composite was
fixed with, e.g. MSEp for MSE between the ground truth image and correspond-
ing composite fixed using predicted masks;MSEs for MSE between ground truth
and a composite fixed using the original MSCOCO masks.

3.6 Evaluation Procedure

Using our generated composite dataset we first evaluate the DIH with ground
truth masks. We then use the same dataset to generate predicted object masks
using the PTC and feed these along with the corresponding composite images
to the DIH. We obtain two sets of corrected composites: composites corrected
using the ground truth masks Cs and composites fixed using masks predicted
by the PTC Cp. We then calculate similarity metrics between the ground truth
images used to generate the composites in the first place, and each of the two
sets of corrected images Cs and Cp. These are reported in the following section.

4 Two-Stage Model: Results

The results of our evaluation can be seen in Figure 4, which shows distributions
of each of the similarity metrics calculated between ground truth images and
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composites fixed using Cs and Cp respectively. Mean similarity metrics can be
seen in Table 1. Overall, masks predicted by the detector yield higher average
errors across all three metrics compared to the ground truth masks, however the
magnitude of these differences is small for each of the metrics. Figure 5 shows
distributions of image-wise error differentials for both techniques.

Metric DIH PTC+DIH

MSE 19.55 22.65
PSNR 35.81 35.18
LPIPS 0.0227 0.0292

Table 1: Means of similarity metrics for both techniques evaluated against ground
truth: DIH, and the PTC+DIH. Lower is better for LPIPS and MSE, higher is
better for PSNR. Reprinted from [11].

Fig. 4: Similarity metric distributions for both Cs (composites corrected with
synthetic ground truth masks) and Cp (corrected with masks predicted by the
detector) (a) MSE, (b) PSNR and (c) LPIPS. Larger values indicate poorer
performance for MSE and LPIPS, better for PSNR. Reprinted from [11].

Fig. 5: The image-wise error differentials for Cp-Cs, for each of the three metrics:
(a) MSE, (b) PSNR and (c) LPIPS. Note, negative values for MSE and LPIPS
indicate images for which Cp (composites corrected with masks predicted by
the detector) achieves lower error than Cs (composites corrected with synthetic
ground truth masks). For PSNR, the obverse is true. Reprinted from [11].



Perceptually-Informed No-Reference Image Harmonisation 11

5 Two Stage Model: Discussion

Our results indicate that using detected, instead of ground truth object masks
can yield comparable results when performing automatic image composite har-
monisation. Errors obtained using ground truth masks are on average lower com-
pared to those obtained using predicted masks, however in a number of cases
the situation is reversed. Figure 6 illustrates examples of failure cases, where
Figures 6c 6d show cases of the DIH over-compensating, while the PTC+DIH
combination achieves a more natural-looking result. We stress that these results
were obtained with no additional training. Further investigation indicates par-
ticular scenarios where this occurs. In some cases, the harmonisation algorithm
applies an inappropriate correction, rendering a higher error for Cs compared to
the un-harmonised input. Then, if Mp does not approximate Ms well, is blank
(no detection) or its average intensity is lower than that of Ms, the additional
error induced by the harmonisation algorithm is minimised, rendering lower er-
rors for Cp. This can be seen in both images in 6d. This indicates the benefit of a
perceptually motivated approach to mask prediction, allowing the influence over
the weight of the transformation applied by the harmoniser. We also notice that
the deep harmonisation network tends to apply colour transformations regard-
less of whether they are required. In some cases, the perceptually-based masks
mitigate this problem. Images showing examples of comparable performance of
the two methods can be found in Figure 7. Subfigures c and d show the results
of harmonisation using the approaches under test and subfigures e and f show
Mp and Ms respectively.

Fig. 6: Examples of the DIH with ground truth masks over-compensating, and
applying colour shifts to compensate a luminance transform, resulting in sub-
optimal output. From left: a) ground truth, b) input composite, c) output of
PTC+DIH, d) output of DIH with ground truth masks, e) masks predicted by
PTC, f) ground truth masks. Reprinted from [11].

Due to the nature of the PTC currently operating solely on luminance trans-
forms, a further benefit to the multi-task learning paradigm is the generalisability
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Fig. 7: Comparison of harmonisation outputs from our evaluation. From left to
right: a) ground truth, b) input composite, c) corrected with PTC+DIH (Cp),
d) corrected with ground truth masks + DIH (Cs), e) Detected masks (Mp), f)
ground truth masks (Ms). Masks in colour indicate the raw output of the PTC,
where the direction of detected luminance shifts is indicated - red for negative
and green for positive shifts. Reprinted from [11].
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to arbitrary pixel level transforms, for example colour shifts. The binary masks
accepted by harmoniser networks currently do not separate across these trans-
forms, they treat them all homogeneously. A perceptually motivated approach
to the predicted mask can encode, on a feature-by-feature basis, the perceptual
likelihood of harmonisation required. This is not to say, necessarily, that deep
harmonisation networks cannot learn this behaviour, but provision of further
support to encode this non-linearity at the input to the network, and/or by ex-
plicit optimisation at the output, would likely benefit performance and improve
generalisation [6]. This is conceptually similar to curriculum learning improving
convergence in reinforcement learning problems [3], or unsupervised pre-training
techniques improving convergence in general.

6 End-to-End Model: Methodology

In Section 4 we illustrated that perceptually-based detection of local image trans-
formations can be leveraged to generate composite masks, achieving comparable
results to ground truth masks when evaluated on an image harmonisation task
using a state-of-the-art harmonisation model. This indicates that an end-to-end
model combining both these tasks could be used to perform no reference har-
monisation, removing the need for provision of object masks for both training
and inference, as opposed to current state-of-the-art approaches. Joint train-
ing would also allow for overall performance improvements and enable different
combinations of the source models to be evaluated. Thus, to perform a fair evalu-
ation, we implement the end-to-end model and the state-of-the-art baseline from
scratch, and train both on the iHarmony dataset [8].

6.1 Model Architectures

The end-to-end model is designed by combining the DIH and PTC models.
First, we implement the DIH model in Tensorflow, according to the authors’
specification and perform random initialisation. We remove one outer layer of
the DIH model, following [8], in order to accomodate for the lower resolution of
the PTC and perform all training using a resolution of 256× 256.

We evaluate two approaches to combining the source models. The first ap-
proach, PTC-DIH combines the models sequentially, whereby the PTC generates
a mask from the input image, which is then concatenated with the input and
fed to the DIH model, as illustrated in Figure 2. We replace the original 3-class
softmax output of the PTC, and replace it with a single-channel sigmoid out-
put, to match the input of the DIH model. We also add up- and downsampling
operations in order to adapt the input image to the 224× 224 resolution of the
PTC, and its output to the 256× 256 input of the DIH.

The second approach, PTC-att-DIH, inspired by self-attention mechanisms
[31], relies on combining the latent features of both models through an attention-
like dot product:
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ajoint = fc3

(
σ
(
fc1(aptc)

)
·fc2(adih)

)
(3)

where aptc is a vector of flattened activations from the bottleneck layer of the
PTC, adih is a vector of activations from the last convolutional layer of the DIH
encoder, fcn are fully-connected layers with 512 neurons each, and σ is a softmax
activation.

In both the PTC-DIH and PTC-att-DIH the encoder of the PTC is frozen
during training, as in [10], however in the case of PTC-DIH, the decoder of the
PTC is allowed to learn, while in the PTC-att-DIH only the encoder is used. The
PTC does not receive any additional supervisory signals, such as ground truth
object masks, or scene segmentation, only the end-to-end MSE harmonisation
loss.

The performance of our joint model is evaluated against two baselines - the
vanilla DIH (without semantic segmentation branch), which requires input masks
(DIH-M ), and a no-mask version of the same model (DIH-NM ), where masks
are not provided as input during training. To ensure a fair comparison, we train
all models from scratch, using the same dataset and evaluate their performance
on the COCO-Exp dataset from Section 3.4 and the iHarmony validation set.
We motivate this by the fact that the original PTC implementation is only con-
ditioned on exposure shifts, so a comparison across both datasets can illustrate
the performance for simple exposure shifts (COCO-Exp) versus more complex
colour transformations (iHarmony). If the perceptually-based features learned
by the PTC generalise well across image features, an improvement should be
seen over the naive DIH-NM model when evaluated on both these datasets.

6.2 Optimization Details

All of our models are trained for 50 epochs using the entire training set of the
iHarmony dataset, consisting of 65742 training images and evaluated using the
validation set, consisting of 7404 validation images. The Adam optimizer [18]
with default parameters and an initial learning rate of 0.001 is used. We set the
batch size to 32 and enforce a 256 × 256 resolution. We apply pre-processing
to all input images scaling the pixel intensity range from [0, 255] to [−1, 1]. For
each training run, we select the model minimising validation loss for further
evaluation.

7 End-to-End Model: Results

This section presents the evaluation of the proposed models on both the valida-
tion set of the iHarmony dataset, as well as the COCO-Exp dataset generated
for the preliminary study.

Table 2 shows average MSE and PSNR values for both datasets and each
of the models. We find that both of our proposed end-to-end models improve
performance on both the iHarmony and COCO-Exp datasets, as compared to
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the naive baseline, when performing harmonization with no input mask. This
suggests the PTC features are relevant to the image harmonisation task. Overall,
the PTC-DIH achieves best performance in harmonisation with no input mask,
outperforming the PTC-att-DIH and the DIH-NM baseline.

Model
iHarmony COCO-Exp

MSE PSNR MSE PSNR

DIH-M 89 32.56 201 32.18

DIH-NM 153 30.93 276 31.12
PTC-att-DIH 151 31.02 264 31.37
PTC-DIH 124 31.39 214 31.61

Table 2: Test metrics for all evaluated models, across the two datasets used in our
experiments. Lower is better for MSE, higher is better for PSNR. Best results
using no input mask in bold. Results for the input-mask-based baseline (DIH-M)
shown for reference. Higher is better for PSNR, lower is better for MSE.

Figure 8 illustrates the performance of all models under evaluation for sev-
eral images from the COCO-Exp dataset. Specifically, in each row the input and
ground truth are shown in Figures 8a and 8b respectively. Figures 8c, 8e and
8g show the harmonised outputs of the DIH-NM, PTC-att-DIH and PTC-DIH
models respectively, while Figures 8d, 8f and 8h are difference image heatmaps
between the input and the harmonised output predicted by each model. These
heatmaps provide an illustration of the magnitude, direction and location of
the applied correction. Upon inspection of similarity metrics, the harmonised
outputs and the difference heatmaps, it can be seen that the PTC-DIH model
outperforms both the baseline (DIH-NM) and the latent-space-based combina-
tion of both models (PTC-att-DIH). This can be seen clearly when comparing
the difference images: the PTC-DIH applies corrections more consistently across
the region of the target object, compared to the two alternatives. Figure 9 com-
pares the performance of the PTC-DIH to the mask-based DIH-M model for 3
versions of an input image from iHarmony. It can be noticed that the output
of both the PTC-DIH and DIH-M closely follow that of the reference. The area
corrected by the PTC-DIH aligns with the ground truth mask. Small differeneces
in the output images can be noted, particularly around edges, where the PTC-
DIH sometimes contribues to softness and smearing (e.g. Fig.9e, middle row).
We found this was often related to artifacts around the edges of objects and near
edges of images produced by the PTC. Nonetheless, despite the lack of input
mask, the PTC-DIH achieves consistent and comparable results for each of the
image variations and, in some cases, avoids the colour shifts induced by the DIH
(e.g. compare columns d) and e) with column c) of Figure 9), as discussed in
Section 5.
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(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 8: Comparison of outputs from each model under evaluation for a range of
images from the COCO-Exp dataset. a) input image b) ground truth c) DIH-NM
result d) Difference image between input and output for DIH-NM e) PTC-att-
DIH result f) difference image between input and output for PTC-att-DIH g)
PTC-DIH result h) PTC-DIH difference image. In difference images, red indi-
cates that ŷi,j − xi,j > 0.0 whereas blue indicates the opposite.

(a) Input (b) Target (c) DIH-M (d) Mask (e) PTC-DIH (f) Diff

Fig. 9: Comparison between the corrections applied by PTC-DIH, and the mask-
based DIH-M models for multiple variants of the same image. a) input composite,
b) ground truth image c) output of DIH-M, d) Difference heatmap between out-
put of DIH-M and ground truth, e) output of PTC-DIH, f) Difference heatmap
between output of PTC-DIH and ground truth.
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Examples of failure cases can be seen in Figure 10. The top two rows illustrate
the most common failure case, where the region requiring harmonisation is not
detected, and thus not corrected by the model. The top row illustrates this
scenario for a larger object size, while the middle row does so for a small object
(one of the sheep near the bottom of the image). The bottom row shows a
scenario where the harmonisation is performed on the correct object, however the
amount of correction is insufficient. In addition, the model applies harmonisation
to a part of the image not requiring harmonisation (the screen). This behaviour
is likely due to the fact that the PTC was originally conditioned on exposure
shifts, resulting in higher sensitivity to over-exposure, compared to other image
distortions.

The impact of object size on harmonisation performance of all models is sum-
marised in Table 3 for both the iHarmony and COCO-Exp datasets. Because the
MSE is calculated across the entire image, errors are overall lower for smaller
objects. However, when comparing the MSE of harmonised images against their
baseline MSE (calculated between the input image and ground truth), the rel-
ative MSE improvements are greatest for larger objects. This trend is present
across both datasets. The PTC-DIH achieves lowest errors in each object size
category across both datasets. Notably, for objects in the COCO-Exp dataset
with areas ranging 20-40% of the image size, the PTC-DIH model achieves lower
errors than the mask-based DIH-M baseline. This illustrates the impact of the
PTC being conditioned on only exposure shifts, but also indicates that these
features are useful when transferred to a different type of transformations, such
as those in iHarmony.

(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 10: Examples of failure cases. a) input image b) ground truth c) DIH-NM
result d) Difference image between input and output for DIH-NM e) PTC-att-
DIH result f) difference image between input and output for PTC-att-DIH g)
PTC-DIH result h) PTC-DIH difference image.
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iHarmony

Object Size 0-10% 10-20% 20-30% 30-40% 40-50% 50-60% 60-70% 70-80%

DIH-M 33.0 116.1 206.5 335.05 456.2 485.48 484.58 705.12

MSE orig. 47.1 235.02 449.84 642.75 1170.31 1222.97 1151.83 1752.12
DIH-NM 50.73 192.22 360.98 497.42 919.29 1058.39 888.11 1534.94
PTC-att-DIH 50.36 190.2 370.65 462.72 884.22 1001.85 933.02 1659.24
PTC-DIH 45.02 150.04 311.72 359.99 623.03 895.33 720.82 1464.62

COCO-Exp

Object Size 0-10% 10-20% 20-30% 30-40% 40-50% 50-60% 60-70% 70-80%

DIH-M 73.74 401.55 655.11 785.35 927.68 1042.68 1119.19 1129.01

MSE orig 86.11 524.29 878.42 1131.53 1503.27 1802.57 2072.08 2097.13
DIH-NM 94.3 502.63 828.69 1045.05 1373.97 1661.55 1876.75 1958.01
PTC-att-DIH 93.26 492.65 802.24 986.49 1271.15 1510.16 1684.99 1806.24
PTC-DIH 82.35 410.08 647.13 778.76 946.99 1084.28 1240.54 1295.38

Table 3: Average MSE on the iHarmony and COCO-Exp datasets for each of the
evaluated models, grouped by area of harmonised object as a fraction of image
size. MSE orig is the MSE between unharmonised inputs and ground truth. Bold
values indicate lowest error for each object size, given no mask input. DIH-M
model shown for reference.
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8 Discussion

The results of both experiments indicate that, in the context of image harmon-
isation, perceptually-based detection of harmonisation targets can be used to
remove the requirement for input object masks. While the proposed approach
does not outperform baseline mask-based approaches, it performs significantly
better than the state-of-the-art baseline when trained with no input masks.
Furthermore, despite the PTC being only conditioned on exposure shifts, its
combination with the DIH model improves results on both datasets, suggesting
that the perceptually-based features learned by the PTC are useful to the har-
monisation task. This is reinforced by the fact that even combining PTC and
DIH features in latent space affords a modest improvement over the baseline.
Some bias towards exposure shifts is nonetheless noticeable - largest improve-
ments across both datasets occur for achromatic objects (e.g. the sink or toilet in
Fig. 8). This could be addressed by training the PTC on a wider range of local
transformations. The problem of object size and its impact on harmonisation
accuracy is likely connected to the fact that larger objects tend to contribute to
the MSE more, compared to smaller objects. The MSE for a small object requir-
ing a 0.5 stop exposure shift will be lower than that of a larger object requiring
the same shift. To alleviate this, when training with input masks, the MSE can
simply be scaled by the mask size [28], however with no input mask, estimation
of target object area becomes nontrivial and presents and interesting direction
for further research.

Not unlike the original DIH implementation, the proposed end-to-end model
can suffer from gradient artifacts along mask edges, particularly when the initial
error to be corrected is large. This issue could be addressed by adopting masked
convolutions and utilising self-attention mechanisms, as in [8] or by explicitly
incorporating gradient information, as in [33]. While we plan to address these
issues in future work, the advantages of our proposed model demonstrated in
this work still hold in the context of image harmonisation with no input mask.
Following [10], we argue that in order to improve image harmonisation perfor-
mance, particularly in scenarios where input masks are not available, detection
of target regions for harmonisation should leverage intermediate representations
equivariant to the transformations of the input to be harmonised. Input masks
used in state-of-the-art harmonisation algorithms mimic this role - they encode
the presence and location of all input transformations requiring harmonisation as
a local binary feature, thus receiving a form of an extra supervisory signal. Our
results show that explicitly incorporating the artifact detection paradigm into
the harmonisation process can be beneficial, while alleviating the requirements
for presence of object masks at inference time.

9 Conclusions & Future Work

In this paper, we have evaluated a novel method for performing image harmon-
isation without the need for input object masks. Our approach leverages two
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state-of-the-art models - an artifact detector and a harmoniser - which, when
combined, produce competitive results to mask-based models. We first perform
a two-stage evaluation of the original pre-trained models, and based on evalua-
tion results, extend this to a custom end-to-end model in two variants, trained
from scratch on the challenging iHarmony dataset. We show that both vari-
ants of our end-to-end model outperform the baselines when evaluated on two
different datasets. These findings indicate that information about location and
magnitude of composite artifacts can be useful in improving the performance
of existing compositing and harmonisation approaches. We motivate this by
illustrating that ground truth object masks commonly used in harmonisation
algorithms essentially substitute the process of detecting local transformations
and inconsistencies requiring correction. Accordingly, our results show that the
requirement for provision of object masks for such algorithms can be relaxed
or removed entirely by the explicit combination of composite artifact detection
with their correction. This provides a basis for investigation in future work of
joint modeling of both the detection and correction of composite image artifacts,
e.g. under a multi-task learning paradigm, where a joint latent representation is
conditioned both to be equivariant with respect to input transformations and to
encode the structure of the image. In such a scenario, input masks may be used
during the training stage, but would not be necessary during inference.

References

1. Agarwala, A., Dontcheva, M., Agrawala, M., Drucker, S., Colburn, A., Curless, B.,
Salesin, D., Cohen, M.: Interactive digital photomontage. In: ACM Transactions
on Graphics (ToG). vol. 23, pp. 294–302. ACM (2004)

2. Azadi, S., Pathak, D., Ebrahimi, S., Darrell, T.: Compositional gan: Learning con-
ditional image composition. arXiv preprint arXiv:1807.07560 (2018)

3. Bengio, Y., Louradour, J., Collobert, R., Weston, J.: Curriculum learning. In: Pro-
ceedings of the 26th annual international conference on machine learning. pp. 41–48
(2009)

4. Burt, P., Adelson, E.: The laplacian pyramid as a compact image code. IEEE
Transactions on communications 31(4), 532–540 (1983)

5. Burt, P.J., Adelson, E.H.: A multiresolution spline with application to image mo-
saics. ACM transactions on Graphics 2(4), 217–236 (1983)

6. Caruana, R.: Multitask learning. Machine learning 28(1), 41–75 (1997)
7. Chen, B.C., Kae, A.: Toward realistic image compositing with adversarial learn-

ing. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. pp. 8415–8424 (2019)

8. Cong, W., Zhang, J., Niu, L., Liu, L., Ling, Z., Li, W., Zhang, L.: Dovenet: Deep
image harmonization via domain verification. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. pp. 8394–8403 (2020)

9. Cun, X., Pun, C.M.: Improving the harmony of the composite image by spatial-
separated attention module. IEEE Transactions on Image Processing 29, 4759–
4771 (2020)

10. Dolhasz, A., Harvey, C., Williams, I.: Learning to observe: Approximating hu-
man perceptual thresholds for detection of suprathreshold image transformations.



Perceptually-Informed No-Reference Image Harmonisation 21

In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. pp. 4797–4807 (2020)

11. Dolhasz., A., Harvey., C., Williams., I.: Towards unsupervised image har-
monisation. In: Proceedings of the 15th International Joint Conference on
Computer Vision, Imaging and Computer Graphics Theory and Applica-
tions - Volume 5: VISAPP,. pp. 574–581. INSTICC, SciTePress (2020).
https://doi.org/10.5220/0009354705740581

12. Dolhasz, A., Williams, I., Frutos-Pascual, M.: Measuring observer response to
object-scene disparity in composites. In: 2016 IEEE International Symposium on
Mixed and Augmented Reality (ISMAR-Adjunct). pp. 13–18. IEEE (2016)

13. Eigen, D., Fergus, R.: Predicting depth, surface normals and semantic labels with
a common multi-scale convolutional architecture. In: Proceedings of the IEEE in-
ternational conference on computer vision. pp. 2650–2658 (2015)

14. Evgeniou, T., Pontil, M.: Regularized multi–task learning. In: Proceedings of the
tenth ACM SIGKDD international conference on Knowledge discovery and data
mining. pp. 109–117. ACM (2004)

15. Gardner, M.A., Sunkavalli, K., Yumer, E., Shen, X., Gambaretto, E., Gagné, C.,
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